Algoritmi za brzo aproksimativno spektralno učenje
Todorović, Branimir, 1967-
Ćirić, Miroslav
Ognjanović, Zoran
Janković, Dragan
Petković, Marko
This thesis presents learning algorithms which use theinformation stored in the spectrum (eigenvalues andeigenvectors) of a matrix derived from the input set. Matricesin question are graph matrices or kernel matrices. However, thealgorithms which use these matrices have either a quadratic orcubic time complexity and quadratic memory complexity.Therefore, in this thesis the algorithms will be presented thatapproximate those matrices and reduce the time and memorycomplexity to the linear one. Also, these algorithms will becompared with the other algorithms that solve this problem, andtheir empirical and theoretical analysis will be presented.
Biobibliografija: list. 114-115;Bibliografija: list. 108-113. Datum odbrane: Artificial Intelligence; Machine Learning
srpski
2021
Ovo delo je licencirano pod uslovima licence
Creative Commons CC BY-NC-ND 3.0 AT - Creative Commons Autorstvo - Nekomercijalno - Bez prerada 3.0 Austria License.
http://creativecommons.org/licenses/by-nc-nd/3.0/at/legalcode