

УНИВЕРЗИТЕТ У НИШУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА ФИЗИКУ

Јелена Алексић

ИСПИТИВАЊЕ СТРУКТУРНИХ, МАГНЕТНИХ И ЛУМИНЕСЦЕНТНИХ СВОЈСТАВА МАТЕРИЈАЛА НА БАЗИ ИТРИЈУМ-ТРИФЛУОРИДА ДОПИРАНИХ ЈОНИМА РЕТКИХ ЗЕМАЉА

ДОКТОРСКА ДИСЕРТАЦИЈА

Ниш, 2022.

UNIVERSITY OF NIŠ FACULTY OF SCIENCES AND MATHEMATICS DEPARTMENT OF PHYSICS

Jelena Aleksić

STUDY OF STRUCTURAL, MAGNETIC AND LUMINESCENCE PROPERTIES OF YTTRIUM TRIFLUORIDE-BASED MATERIALS DOPED WITH RARE-EARTH IONS

PhD Thesis

Niš, 2022.

Подаци о докторској дисертацији

Ментор:	др Тања Баруџија, научни сарадник, Институт за нуклеарне науке "Винча", Институт од националног значаја за Републику Србију, Универзитет у Београду др Љиљана Костић, ванредни професор, Природно-математички факултет, Универзитет у Нишу
Наслов:	Испитивање структурних, магнетних и луминесцентних својстава материјала на бази итријум-трифлуорида допираних јонима ретких земаља
Резиме:	Неоргански материјали допирани ретким земљама су веома атрактивни како у истраживањима, тако и у бројним применама у индустрији, услед својих специфичних својстава која произилазе из делимично попуњених 4 <i>f</i> електронских љуски. Циљ ове докторске дисертације је синтеза, карактеризација и детаљно испитивање структурних, магнетних и луминесцентних својстава материјала на бази итријум-трифлуорида допираних јонима ретких земаља. У оквиру истраживања, методом флуоридизације одговарајућих оксида ретких земаља амонијум хидроген-дифлуоридом, синтетисане су две групе чврстих раствора: Yb _x Y _{1-x} F ₃ и YF ₃ :Yb/Ln (Ln=Er, Tm, Ho). Код прве групе узорака праћена је промена карактеристичних својстава (структурних и магнетних) са променом концентрације јона итербијума. Код друге групе узорака акценат је био на испитивању њихових луминесцентних својстава, како и потенцијалне примене узорака YF ₃ :Yb/Er у термометрији.
Научна област:	Физика
Научна Научна дисциплина:	Кондензована материја
Кључне речи:	Трифлуориди ретких земаља, кристално и лигандно поље, рендгенска дифракција, магнетна мерења, луминесцентна термометрија, <i>ир</i> -конверзија
УДК:	538.9:66.017/.018+53.04+661.143(043.3)
CERIF класификација:	Р 250 Кондензоване материје: структура, термичке и механичке карактеристике, кристалографија, фазна равнотежа Р 260 Кондензоване материје: електронска структура, електричне, магнетне и оптичке карактеристике, суперпроводници, магнетна резонанца, релаксација, спектроскопија
Тип лиценце Креативне заједнице:	CC BY-NC-ND

Data on Doctoral Dissertation

	Dr. Tanja Barudžija, Research Associate,
	Vinča Institute of Nuclear Science, National Institute of the
	Republic of Serbia, University of Belgrade
Doctoral	Dr. Liiliana Kostić Associate Professor
Supervisor	Eaculty of Sciences and Mathematics University of Niš
Supervisor.	racuity of Sciences and Maulematics, Oniversity of 1415
Title:	Study of structural, magnetic and luminescence properties of yttrium trifluoride-based materials doped with rare-earth ions
Abstract:	Rare-earth based inorganic materials are very attractive in scientific research, as well as numerous industry applications, due to their specific properties that arise from the partially filled $4f$ orbitals. The aim of this thesis is the synthesis, characterization, and detailed investigation of the structural, magnetic, and luminescent properties of yttrium trifluoride materials doped with rare-earth ions. The scope of this research includes the synthesis of two sets of solid solutions, $Yb_xY_{1-x}F_3$ and YF_3 :Yb/Ln (Ln=Er, Tm, Ho), by the reaction of an appropriate amount of oxides with ammonium hydrogen-difluoride. The various characteristic properties, such as the structural and magnetic properties, for different ytterbium concentrations within the first set of solid solutions, the main focus is placed on the investigations of their luminescent properties, as well as potential applications of YF_3 :Yb/Er samples in thermometry.
Scientific Field:	Physics
Scientific Discipline:	Condensed matter
L	
Key Words:	Rare-earth trifluorides, crystal and ligand fields, X-ray diffraction, magnetic measurements, luminescence thermometry, up-conversion
UDC:	538.9:66.017/.018+53.04+661.143(043.3)
CERIF Classification:	P 250 Condensed matter: structure, thermal and mechanical properties, crystallography, phase equilibria P 260 Condensed matter: electronic structure, electrical, magnetic and optical properties, superconductors, magnetic resonance, relaxation, spectroscopy
Creative Commons	CC BY-NC-ND
License i ype.	

ПРИРОДНО - МАТЕМАТИЧКИ ФАКУЛТЕТ

НИШ

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА

Редни број, РБР :							
Идентификациони бро	ој, ИБР :						
Тип документације, ТД	1:	монографска					
Тип записа, ТЗ :		текстуални / графички					
Врста рада, ВР :		докторска дисертација					
Аутор, АУ :		Јелена С. Алексић					
Ментор, МН :		Тања С. Баруџија, Љиљана Т. Костић					
Наслов рада, НР :		ИСПИТИВАЊЕ СТРУКТУРНИХ, МАГНЕТНИХ И ЛУМИНЕСЦЕНТНИХ СВОЈСТАВА МАТЕРИЈАЛА НА БАЗИ ИТРИЈУМ – ТРИФЛУОРИДА ДОПИРАНИХ ЈОНИМА РЕТКИХ ЗЕМАЉА					
Језик публикације, ЈП	:	српски					
Језик извода, ЈИ :		енглески					
Земља публиковања,	<u>ЗП:</u>	Србија					
Уже географско подру	чје, УГП :	Србија					
Година, ГО :		2022.					
Издавач, ИЗ :		ауторски репринт					
Место и адреса, МА :		Ниш, Вишеградска 33.					
Физички опис рада, Ф (поглавља/страна/ цитата/табела/с	О: лика/графика/прилога)	5 поглавља, 120 страна, 140 цитата, 8 табела, 41 слика					
Научна област, НО :		Физика					
Научна дисциплина, Н	<u>IД:</u>	Кондензована материја					
Предметна одредница/Кључне речи, ПО :		Грифлуориди ретких земаља, кристално и лигандно поље, рендгенска дифракција, магнетна мерења, луминесцентна термометрија, <i>ир</i> -конверзија					
удк		538.9:66.017/.018+53.04+661.143(043.3)					
Чува се, ЧУ :		библиотека					
Важна напомена, ВН :		/					
Извод, ИЗ :		Неоргански материјали допирани ретким земљама су веома атрактивни како у истраживањима, тако и у бројним применама у индустрији, услед својих специфичних својстава која произилазе из делимично попуњених 4 <i>f</i> електронских љуски. Циљ ове докторске дисертације је синтеза, карактеризација и детаљно испитивање структурних, магнетних и луминесцентних својстава материјала на бази итријум-трифлуорида допираних јонима ретких земаља. У оквиру истраживања, методом флуоридизације одговарајућих оксида ретких земаља амонијум хидроген-дифлуоридом, синтетисане су две групе чврстих раствора: Yb _x Y _{1-x} F ₃ и YF ₃ :Yb/Ln (Ln = Er, Tm, Ho). Код прве групе узорака праћена је промена карактеристичних својстава (структурних и магнетних) са променом концентрације јона итербијума. Код друге групе узорака акценат је био на испитивању њихових луминесцентних својстава, како и потенцијалне примене узорака YF ₃ :Yb/Er у термометрији.					
Датум прихватања тем	ие, ДП:	8. новембар 2021.					
Датум одбране, ДО :							
Чланови комисије, КО :	Председник:						
	Члан:						
	Члан, ментор:						
	Члан, ментор:						

ПРИРОДНО - МАТЕМАТИЧКИ ФАКУЛТЕТ НИШ

KEY WORDS DOCUMENTATION

Accession number, AN	O :	
Identification number, I	NO:	
Document type, DT:		monograph
Type of record, TR:		textual / graphic
Contents code, CC:		doctoral dissertation
Author, AU :		Jelena S. Aleksić
Mentor, MN:		Tanja S. Barudžija, Ljiljana T. Kostić
Title, TI :		STUDY OF STRUCTURAL, MAGNETIC AND LUMINESCENCE PROPERTIES OF YTTRIUM TRIFLUORIDE-BASED MATERIALS DOPED WITH RARE-EARTH IONS
Language of text, LT:		Serbian
Language of abstract, L	_ A :	English
Country of publication,	CP:	Serbia
Locality of publication, I	LP:	Serbia
Publication year, PY:		2022
Publisher, PB:		author's reprint
Publication place, PP:	D:	Nis, Visegradska 33.
Chapters/pages/ref./tables/pictures	D: s/graphs/appendixes)	5 chapters, 120 pages, 140 references, 8 tables, 41 pictures
Scientific field, SF:		Physics
Scientific discipline, SD		Condensed matter
Subject/Key words, S/KW :		Rare-earth trifluorides, crystal and ligand fields, X-ray diffraction, magnetic measurements, luminescence thermometry, up-conversion
UDC		538.9:66.017/.018+53.04+661.143(043.3)
Holding data, HD :		Library
Note, N:		/
Abstract, AB :		Rare-earth based inorganic materials are very attractive in scientific research, as well as numerous industry applications, due to their specific properties that arise from the partially filled $4f$ orbitals. The aim of this thesis is the synthesis, characterization, and detailed investigation of the structural, magnetic, and luminescent properties of yttrium trifluoride materials doped with rare-earth ions. The scope of this research includes the synthesis of two sets of solid solutions, Yb _x Y _{1-x} F ₃ and YF ₃ :Yb/Ln (Ln=Er, Tm, Ho), by the reaction of an appropriate amount of oxides with ammonium hydrogen-difluoride. The various characteristic properties, such as the structural and magnetic properties, for different ytterbium concentrations within the first set of solid solutions are studied in detail. Within the second set of solid solutions, the main focus is placed on the investigations of their luminescent properties, as well as potential applications of YF ₃ :Yb/Er samples in thermometry.
Accepted by the Scientific	Board on, ASB:	November 8, 2021.
Defended on, DE:		
Defended Board, DB:	President:	
	Member:	
	Member, Mentor:	
	Member, Mentor:	

ЗАХВАЛНИЦА

Ова докторска дисертација урађена је под менторством др Тање Баруџије, научног сарадника Института за нуклеарне науке "Винча" и др Љиљане Костић, ванредног професора Природно-математичког факултета Универзитета у Нишу.

Најискреније се захваљујем др Тањи Баруџији, пре свега на прихватању менторства, стрпљењу и указаном поверењу. Захваљујем се на великој помоћи у истраживањима, на идејама и преношењу знања, помоћи око тумачења резултата, као и у самој изради и писању ове дисертације.

Велику захвалност дугујем професорки др Љиљани Костић на свим корисним саветима, посвећеном времену и усмеравању на дугом путу школовања, од средње школе до докторских студија. Такође, захваљујем јој се на корисним смерницама и помоћи у изради саме дисертације.

Посебно хвала др Миодрагу Митрићу, научном саветнику Института за нуклеарне науке "Винча", који ме је срдачно примио у своју лабораторију и дао бројне корисне смернице везане за истраживачки рад.

Захваљујем се др Мирославу Драмићанину, научном саветнику Института за нуклеарне науке "Винча" и његовој истраживачкој групи на сарадњи.

Хвала свим истраживачима из Института за нуклеарне науке "Винча" који су учествовали у реализацији овог истраживања.

Хвала свим професорима са Департмана за физику Природноматематичког факултета у Нишу на пренетом знању и саветима током студирања.

На крају, највеће хвала мојој породици и пријатељима који су ми пружали велику љубав и подршку свих ових година.

Садржај

1	Увс	од		1
2	Teo	ријски	й део	5
	2.1	Поли	морфизам трифлуорида ретких земаља	5
		2.1.1	Структура LaF ₃	7
		2.1.2	Структура β -YF ₃	9
		2.1.3	Структура α-YF ₃	10
		2.1.4	Структура REO3	12
	2.2	Магн	етна и електронска својства трифлуорида ретких земаља	14
		2.2.1	Електронска структура јона ретких земаља	14
		2.2.2	Парамагнетизам слободног јона ретке земље	18
		2.2.3	Јони ретких земаља у кристалном пољу	21
		2.2.4	Кири-Вајсов закон за разређене магнетне системе	28
		2.2.5	Магнетна својства трифлуорида ретких земаља	28
	2.3	Појам	м и механизам луминесценције	30
		2.3.1	<i>f-f</i> прелази	32
		2.3.2	<i>Up</i> - конверзија	34
			Активатори	37
			Сензибилизатори	38
			Материјал домаћин	38
	2.4	Луми	несцентна термометрија	39
		2.4.1	Одређивање температуре на основу односа интензитета емисиј	a
			- LIR метода	42
3	Екс	перим	иентални део	44
	3.1	Пред	мет и циљ рада	44
	3.2	Синте	еза	45
		3.2.1	Флуоридизација оксида ретких земаља амонијум	
			хидроген-дифлуоридом	45
	3.3	Ренді	сенска дифрактометрија праха	46

		3.3.1	Ритвелдова метода профилног утачњавања	. 47
	3.4	Скени	ирајућа електронска микроскопија	. 52
	3.5	SQUI	D магнетометрија	. 55
		3.5.1	MPMS систем	. 56
	3.6	Фото	луминесцентна спектроскопија	. 59
4	Рез	ултат	и и дискусија	62
	4.1	Чврс	ти раствори итријум-трифлуорида	
		допир	рани јонима итербијума, Yb _x Y _{1-x} F ₃	. 62
		4.1.1	Синтеза узорака	. 62
		4.1.2	Структурна и микроструктурна анализа	. 63
			Рендгенска дифракциона анализа	. 63
			Ритвелдова анализа	. 63
			Скенирајућа електронска микроскопија (SEM)	. 69
		4.1.3	Магнетна својства	. 72
	4.2	Чврс	ти раствори YF3:Yb/Ln (Ln=Er, Tm, Ho)	. 79
		4.2.1	Синтеза узорака	. 79
		4.2.2	Структурна и микроструктурна анализа	. 79
			Ритвелдова анализа	. 80
		4.2.3	Магнетна својства	. 83
		4.2.4	Емисиони спектри	. 87
	4.3	Терм	ометријска својства система YF ₃ :Yb/Er	. 90
		4.3.1	Резултати LIR анализе	. 92
5	Зак	ључан	¢	100
л	итер	атура		104
Б	иогр	афија		116
Б	-			110
D I	иоли	юграф	ија	118
И	зјаве	е аутој	pa	120

Глава 1

Увод

По препоруци Међународне уније за чисту и примењену хемију (енг. Ілternational Union of Pure and Applied Chemistry, скраћено IUPAC) ретким земљама (енг. Rare Earth, скраћено RE) називамо групу од 17 елемената која укључује 15 лантаноида (од La до Lu), заједно са скандијумом (Sc) и итријумом (Y). Лантаноиди се могу класификовати у две групе. Прву групу чине тзв. лаке земље којој припадају лантаноиди са неспареним 4f електронима (La – Gd), док њихови тежи пандани (Tb – Lu) припадају групи тешких ретких земаља (Слика 1). Већини ових елемената заправо не одговара назив редак, јер су углавном веома распрострањени у земљиној кори. Назив редак се може повезати са тешким процесом екстракције ових елемената, с обзиром да се јављају заједно у природи и веома је тешко раздвојити их. Само на појединим местима у природи их има у већим концентрацијама које су довољне за исплативу експлоатацију. Како потражња за ретким земљама расте, расте и њихова цена, па је постало економски исплативо отварати налазишта са малим процентом ових елемената. Кина је тренутно највећи светски произвођач ретких земаља са скоро 60% глобалне годишње производње, која се за 2020. годину процењује на 140000 тона [1].

Слика 1: Ретке земље [2].

Неоргански материјали допирани ретким земљама привлаче велико интересовање како у истраживачком раду, тако и у индустрији, услед специфичних каталитичких, електричних, магнетних, оптичких и хемијских својстава која произилазе из делимично попуњених 4f електронских љуски [3–13]. Ретке земље имају богате енергетске нивое и дугоживећа побуђена стања, која могу да делују као метастабилни енергетски нивои, тако да код ових материјала долази до апсорпције фотона и настанка интензивне анти-Стоксове фотолуминесценције и при релативно ниским ексцитационим густинама снаге [14]. Специфична својства чине елементе ретких земаља веома траженим и незаменљивим у савременим технологијама. Њихова примена је велика у производњи сталних магнета, легура за батерије, керамика, адитива за стакло, аутокатализатора, у металургији, и друго [15–19]. Последњих деценија интересовање за ове материјале убрзано расте захваљујући напретку у синтези наноструктурних материјала [5, 20-22]. Наночестице су димензија у којима се одвија већина биомолекуларних интеракција (у распону од 1 до 100 nm), тако да инкорпорација ретких земаља у наноматеријале омогућава примену ових материјала у различитим биомедицинским апликацијама које укључују *bioimaging*¹, таргетирање, биосензоре, носаче лекова и друге терапије. Наночестице допиране ретким земљама показују неке предности у односу на друге материјале доступне у биомедицини: показују ниску токсичност и високу температурску и хемијску стабилност. Поред тога, у поређењу са другим луминесцентним наночестицама често коришћеним у биоапликацијама, попут органских боја и квантних тачака, наночестице са ретким земљама имају високу фотостабилност, велики квантни принос луминесценције, дуго флуоресцентно време живота, оштре емисионе линије и велику отпорност на фотобељење [23-26]. Још важније, ове наночестице имају велики потенцијал да се користе за неинванзивне, недеструктивне и *in vivo*² дијагностике у реалном времену за различите болести, укључујући атеросклерозу, које могу довести до можданог удара и срчаних обољења [16, 27].

С обзиром на то да је температура једна од најчешће мерених физичких величина, развитак нових сензора температуре који би превазишли ограничења већ постојећих метода отвара могућности ка даљем истраживању. За потребе

¹ Bioimaging представља неинванзивни процес визуализације биолошке активности у одређеном периоду.

²Термин *in vivo* односи се на неки поступак, медицински тест или експеримент, који се спроводи на/у живом организму, што може бити лабораторијска животиња или човек.

мерења у тешким и корозивним срединама, или у јаким електромагнетним пољима, луминесцентна термометрија привлачи највећу пажњу међу доступним методама [28, 29]. Употреба фосфора на бази ретких земаља као температурских сензора у последње време је постала веома интересантна. Фосфорна термометрија се заснива на две методе, на мерењу времена живота луминесценције и на мерењу односа интензитета емисије. У поређењу са методама заснованим на мерењу времена живота, које су такође веома популарне, методе засноване на мерењу односа интензитета две емисионе линије (енг. *luminescence intensity ratio*, LIR) су брже, једноставније и захтевају мање софистицирану инструментализацију. За термометријска истраживања у овој дисертацији коришћена је LIR метода.

Приликом проучавања луминесценције код јона ретких земаља, утврђено је да је за непожељне нерадијационе релаксације (које умањују ефикасност луминесценције) највише одговорна највиша фреквенција фонона у решетки матрице домаћина. У циљу превазилажења овог проблема, потребно је изабрати одговарајућу решетку са ниском енергијом фонона. Избор матрице домаћина такође одређује и растојање између јона допаната, њихов релативни положај у простору, координационе бројеве, као и тип анјона који окружују јоне допанте. Особине матрице домаћина и њена интеракција са допираним јонима имају снажан утицај на процес *up*-конверзије [30]. Различите матрице домаћини, попут оксида и фосфата, проучаване су у циљу добијања што бољег *ир*-конверзионог материјала, међутим фононске енергије су обично доста високе, што доводи до ниже ефикасности луминесценције услед нерадијационих губитака. У односу на њих, флуориди показују ниску фононску енергију ($< 400 \, {\rm cm}^{-1}$), велики индекс преламања, оптичку транспарентност у широком опсегу таласних дужина, као и термичку и хемијску стабилност, што их чини одличним домаћинима за *up*конверзионе процесе [30–34]. Флуориде допиране тровалентним јонима ретких земаља карактерише ниска вероватноћа мултифононске релаксације која резултира дугоживећим ексцитованим стањима и високом квантном ефикасношћу луминесценције. Међу њима, итријум трифлуорид (YF₃), чист или допиран јонима ретких земаља, темељно је истражен као обећавајући материјал домаћин за фосфорне материјале допиране лантаноидима са интересантним up/down конверзионим луминесцентним особинама [35–38]. Ови материјали представљају и одличне моделне системе за тестирање магнетизма ретких земља у изолаторима.

Предмет ове докторске дисертације је синтеза и детаљно испитивање структурних, магнетних и оптичких особина итријум-трифлуорида допираног јонима ретких земаља, као и њихова могућа примена у луминесцентној термометрији.

У првом делу дисертације дат је детаљан преглед структуре трифлуорида

ретких земаља. Затим су описана магнетна својства трифлуорида као и појам и механизам луминесценције са посебним акцентом на луминесцентну термометрију.

У поглављу Експерименталне методе приказан је детаљан опис материјала и метода коришћених приликом израде ове дисертације. Дат је опис флуоридизације оксида ретких земаља амонијум хидроген-дифлуоридом и описане су методе карактеризације: рендгенска дифрактометрија, скенирајућа електронска микроскопија, SQUID магнетометрија и фотолуминесцентна спектрометрија. Такође је дат опис инструмената коришћених за одређена мерења.

Добијени резултати су представљени и дискутовани у делу Резултати и дискусија. У првом делу овог поглавља испитивани су $Yb_xY_{1-x}F_3$ чврсти раствори. Приказана је синтеза ових узорака, структурна и микроструктурна анализа као и магнетна својства датих прахова. У другом делу су разматрани чврсти раствори YF₃:Yb/Ln (Ln = Er, Tm, Ho). Приказана је синтеза чврстих раствора, као и резултати рендгеноструктурне анализе, магнетна својства и емисиони спектри. На крају су детаљно испитивана термометријска својства система YF₃:Yb/Er и приказани резултати LIR анализе.

Глава 2

Теоријски део

2.1 Полиморфизам трифлуорида ретких земаља

У науци о материјалима, под полиморфизмом подразумевамо појаву да се једна супстанција може јавити у више различитих кристалних облика, који су термодинамички стабилни у датом домену притиска и температуре. Полиморфни прелази су структурни прелази до којих долази са променом интензивних параметара стања. Овај параметер за једнокомпонентни систем при константном притиску је температура.

Сви елементи ретких земаља формирају флуориде опште формуле REF₃. Трифлуориди ретких земаља формирају хомологни низ једноставног састава (REF₃) са јонским карактером хемијских веза и минималном разликом у атомском броју катјона суседних једињења ($\Delta Z = 1$). REF₃ низ је један од најдужих и садржи укупно 17 једињења. Овај низ чине три d елемента (Sc, Y, La) и четрнаест 4fелемената (лантаноиди, од Се до Lu). Хемијска повезаност ретких земаља заснована је на њиховој електронској структури и испољава се у позиционирању ових 15 елемената лантаноида у једну периоду Периодног система и у њиховој валенцији која износи 3+. Полиморфизам и тачка топљења једињења REF₃ су доста изучавани у литератури [39, 40]. Код ових једињења, полиморфизам је изазван променом интензивне променљиве стања, температуре (T), преко геометријског фактора. Са повећањем температуре долази до бржег раста величине анјона у односу на катјоне [41]. Однос величине катјона и анјона r_+/r_- опада услед чега долази до смањења координационог броја (CN) и појаве полиморфизма. Јон F^{-1} , који је по величини мали и има ниску поларизабилност може да се понаша другачије са растом температуре у односу на велике анјоне. Шема фазних трансформација (полиморфизам и топљење) једињења REF₃ (изузев ScF₃) приказана је на Слици 2 у растућем поретку у односу на број Z (осим за једињење YF_3) [42]. На основу досадашњих разматрања забележено је да постоје четири различите

структуре ових једињења: LaF₃, β – YF₃, α – YF₃ (α – UO₃) и REO₃ [39]. Промена у структури трифлуорида испољава се у различитом нагибу крива топљења (на Слици 2 представљене бројевима 1, 3, 5 и 6). Изузетак представљају криве 1 и 3, које описују REF₃ флуориде истог структурног типа (LaF₃).

Слика 2: Комплетна шема фазних трансформација у једињењима REF₃ [42].

Међу трифлуоридима посебно је интересантно једињење PmF_3 које се налази на граници морфотропног¹ прелаза. Ова чињеница ствара компликације код предвиђања полиморфизма овог једињења, па се обично у фазним дијаграмима PmF_3 изоставља из дискусије. Такође, температура полиморфног прелаза из $\alpha \leftrightarrow \beta - PmF_3$ је доста ниска и процењује се на неких 140 °C [42]. На основу структурног понашања, низ од 16 флуорида формуле REF₃ (изузев PmF₃) се може поделити у пет група. *Прву групу* чине трифлуориди од La до Nd (и вероватно Pm), који кристалишу у LaF₃ структури, која се још назива и тисонитна структура (енг. *tysonite structural type*), унутар целог температурског интервала, од

¹Морфотропни прелаз је прелаз из једне кристалне структуре у другу кристалну структуру материјала приликом промене квалитативног састава материјала, нпр. заменом једне врсте катјона другом врстом катјона.

собне температуре до тачке топљења. Код ових једињења долази до монотоног опадања температуре топљења са порастом атомског броја (крива 1 на Слици 2). Другој групи припадају диморфни флуориди REF₃ од Sm до Gd. Ова једињења се у зависности од температуре могу јавити
у $\beta-\mathrm{YF}_3$ или LaF_3 структурном типу. Фазни прелази из орторомбичне $\beta - \text{REF}_3$ у LaF₃ структуру праћени су, на основу података датих у литератури [43], незнатним топлотним ефектима који представљају последицу малих померања атома у структури. У трећу rpyny се сврставају једињења TbF₃, DyF₃ и HoF₃ која кристалишу и задржавају $\beta - YF_3$ структуру све до тачке топљења. *Четврта група* обухвата REF_3 од Er до Lu, заједно са Y. Ови флуориди су опет диморфни. Нискотемпературска модификација одржава структуру $\beta - YF_3$. Високотемпературска структура је изотропна са $\alpha - UO_3$ [39]. Када је у питању једињење YF₃, његове термодинамичке карактеристике полиморфног прелаза и тачка топљења недвосмислено указују на то да припада структурној групи флуорида лантаноида. Позиција итријумових једињења у групи изоструктурних лантаноидних једињења је различита за различиту класу хемијских једињења. Када су у питању хемијска својства и већина параметара, што се тиче флуорида, YF₃ је смештен између једињења ErF₃ и HoF₃. У погледу полиморфизма, ово једињење припада групи ретких земаља од Но до Lu. На крају, *nemoj групи* припада само једињење ScF_3 . Ово једињење, при нормалном притиску, не кристалише ни у једној од претходно наведених структурних модификација. Једињење ScF₃ кристалише у ReO₃ (AlF₃) структурном типу. Најјаснији су подаци добијени за ову структуру, међутим само једно једињење кристалише у датој структурној модификацији.

Полиморфне структурне трансформације код флуорида, изазване променом температуре, ограничене су истим параметром: односом полупречника катјона и анјона r + /r -. Када овај однос достигне одређену вредност, кристална фаза губи на стабилности и подлеже топљењу. У даљем тексту дат је опис све четири структурне модификације трифлуорида са ретким земљама.

2.1.1 Структура LaF₃

Дискусија о просторној групи LaF₃ или тисонитној структури почиње двадесетих година прошлог века и даље представља предмет бројних истраживачких контраверзи [39]. Нема сумње на основу бројне литературе, да добро жарени трифлуориди велике чистоће имају структуру која одговара тригоналној просторној групи симетрије $P\bar{3}c1$ (D_{3d}^4 , са шест молекула по јединичној ћелији, Z = 6) [44]. Шема ове структуре је приказана на Слици 3. Унутар кристалне структуре LaF₃ постоје три кристалографски различита места за јон флуора, обележена са F1 (Викофова² позиција 12g (x, y, z), са тачкастом симетријом C_1 или искривљена T_d), затим са F2 (Викофова позиција 4d (1/2, 2/3, z), са тачкастом групом симетрије C_{3v}) и F3 (Викофова позиција 2a (0, 0, 1/4), са тачкастом групом симетрије D_{3h}). Катјони су смештени у Викофов 2f (x, 0, 1/4) положај. У оваквој структури катјони формирају хексагоналне слојеве у z = 1/4 и z = 3/4, ређајући се дуж осе [001], пратећи ABAB низ (Слика 3а). Координациони број катјона је 11. Анјони флуора формирају изобличене LaF₁₁ полиедре, који настају од неправилних тригоналних призми са два додатна анјона која покривају горњу и доњу троугаону површ. Ови полиедри су међусобно повезани преко заједничких страница дуж [100], [110], [010] оса, формирајући (001) слојеве, и преко заједничких ивица дуж [001] осе, правећи цик-цак ланце (Слика 3д) [45].

Слика 3: а) Слагање *ABAB* равни La³⁺ катјона у структури LaF₃, б) Пројекција LaF₃ јединичне ћелије на (001) раван, ц) ланац сачињен од LaF₁₁ полиедара [45].

Међутим, у литератури се могу наћи бројне студије у којима је тисонитна структура описана мањом јединичном ћелијом са Z = 2 и просторном групом P63/mmc, која представља супергрупу од $P\bar{3}c1$ [46]. Показано је у студији [46], на основу резултата електронске дифракције, да обе групе симетрије постоје унутар истог узорка. Сада је очигледно да на ниским температурама доминира високо уређена суперструктура са Z = 6, док на вишим температурама анјонски пертурбована основна структура са Z = 2 добија све више на значају. Овакво понашање је у корелацији са необично високом покретљивошћу анјона у LaF₃, или, уопштеније говорећи, материјала са тисонитном структуром.

²ehr. Wyckoff positions

2.1.2 Структура β-YF₃

Прва анализа кристалне структуре орторомбичне модификације REF₃ урађена је 1953. године за монокристал YF₃ [47]. Овај структурни тип назван је орторомбични YF₃. Касније је показано да је једињење YF₃ диморфно и ова нискотепературска форма означена је са $\beta - YF_3$. Данас је познато да трифлуориди од Sm до Lu кристалишу у овој структурној модификацији, од којих је за једињења TbF₃, DyF₃ и HoF₃ ово једина структура у целом температурском интервалу све до тачке топљења. Једињења YF₃ и LnF₃ (Ln = Er, Tm, Yb и Lu) не очувавају $\beta - YF_3$ кристалну структуру у целом температурском интервалу, већ на вишим температурама долази до полиморфног прелаза у $\alpha - YF_3$ структуру. Одговарајуће температуре прелаза су 1267 К и 1350 К за YbF₃ и YF₃, редом [48]. Температуре прелаза за чврсте растворе $Yb_xY_{1-x}F_3$, разматране у овој докторској дисертацији, налазе се негде између ове две температуре и опадају са повећањем концентрације итербијумовог јона у једињењу [7]. У температурском интервалу који је од интереса у овом експерименту, сви добијени чврсти раствори постоје у структурном типу $\beta - YF_3$ и не долази до промене фазе.

Једињења $\beta - YF_3$ типа поседују орторомбичну структуру просторне групе Pnma (No.62), са четири молекула по јединичној ћелији. У овој кристалној структури, катјони се налазе у Викофовом положају 4c са координатама $(x, \frac{1}{4}, z)$, док јони флуора заузимају $4c (x, \frac{1}{4}, z)$ и 8d општи положај (x, y, z) [47]. 3D приказ орторомбичне $\beta - YF_3$ кристалне структуре дат је на Слици 4. Тродимензионална структура овог типа састоји се од неправилних 9-координатних YF₉ полиедара међусобно повезаних преко заједничких темена, ивица и страница. Око сваког полиедра налази се једанаест суседних полиедара. Сваки полиедар има заједничку страницу са два најближа полиедра, заједничку ивицу са још два полиедра и заједничко теме са преосталих седам суседних полиедара. Полиедри који међусобно имају заједничке странице формирају ланце у правцу а-осе и сваки од тих ланаца је бочно повезан са шест суседних ланаца преко заједничких ивица и темена. Итријумови јони на овим положајима могу се супституисати тровалентним јонима лантаноида услед сличних атомских пречника тровалентних јона лантаноида и јона итријума (Табела 1). За разлику од флуорида структурног типа LaF₃, трифлуориди који кристалишу у β – YF₃ структури представљају обећавајуће материјале домаћине за примене у луминесценцији.

Слика 4: Орторомбична β – YF₃ кристална структура.

2.1.3 Структура а-YF₃

На вишим температурама, кристали у низу REF₃ од ErF₃ до LuF₃ и YF₃, пролазе кроз структурни фазни прелаз из β – YF₃ у за сад не добро идентификовану α – YF₃ кристалну структуру. Ова структура се сматра изоструктурном са α – UO₃ структуром, која припада тригоналној просторној групи $P\bar{3}m1$ (D_{3d}^3), са Z = 1. Ова структурна фаза је стабилна само на високој температури. Упркос томе, у литератури [49] је показано да α – YF₃ и α – LuF₃ фазе имају високу јонску проводност, и сматране су високотемпературским суперјониским материјалима. Према Соболеву [39] координациони број у решетки типа α – YF₃ је 8, али координациони полиедри овог облика се значајно разликују од оних код орторомбичне модификације. Новији радови, који су показали да је могуће стабилизовати високотемпературску модификацију α – YF₃ типа изоморфним заменама, сугеришу да је могуће припремити кристале на такав начин да се може одредити ком структурном типу припадају [39, 50]. **Табела 1:** Јонски радијуси Ln³⁺ јона у Ln(III) комплексима за различите координационе бројеве [51, 52]. Основна електронска конфигурација, основни и први побуђени мултиплет тровалентних јона лантаноида. Енергетска разлика између основног и првог побуђеног мултиплета [53].

	Јонски	Координациони	Основна	Основни	Први	$\mathbf{E_1} - \mathbf{E_2}$
Јон	радијус [Å]	број	електронска	мултиплет	побуђени	$[\mathrm{cm}^{-1}]$
			конфигурација		мултиплет	
Y ³⁺	0,900	VI	$4p^6$	$^{1}S_{0}$	_	_
	1,015	VIII				
	1,100	IX				
Ce^{3+}	1,010	VI	$4f^1$	${}^{2}\mathrm{F}_{5/2}$	${}^{2}\mathrm{F}_{7/2}$	2200
	1,140	VIII				
	1,150	IX				
Pr^{3+}	0,997	VI	$4f^2$	${}^{3}\mathrm{H}_{4}$	$^{3}\mathrm{H}_{5}$	2200
	1,140	VIII				
Nd^{3+}	0,983	VI	$4f^{3}$	${}^{4}I_{9/2}$	${}^{4}I_{11/2}$	1800
	1,120	VIII				
Pm ³⁺	0,970	VI	$4f^4$	${}^{5}\mathrm{I}_{4}$	$^{5}I_{5}$	1600
Sm^{3+}	0,958	VI	$4f^{5}$	${}^{6}\mathrm{H}_{5/2}$	${}^{6}\mathrm{H}_{7/2}$	1000
	1,090	VIII				
Eu^{3+}	0,947	VI	$4f^{6}$	$^{7}\mathrm{F}_{0}$	$^{7}\mathrm{F}_{1}$	350
	1,030	VII				
	1,070	VIII				
Gd^{3+}	0,938	VI	$4f^{7}$	${}^{8}S_{7/2}$	${}^{6}\mathrm{P}_{7/2}$	32200
	1,040	VII				
	1,060	VIII				
Tb^{3+}	0,923	VI	$4f^{8}$	$^{7}\mathrm{F}_{6}$	$^{7}\mathrm{F}_{5}$	2300
	1,020	VII				
	1,040	VIII				
Dy ³⁺	0,912	VI	$4f^9$	${}^{6}\mathrm{H}_{15/2}$	${}^{6}\mathrm{H}_{13/2}$	3400
	1,030	VIII		·	·	
Ho ³⁺	0,901	VI	$4f^{10}$	${}^{5}I_{8}$	${}^{5}I_{7}$	5000
	1,020	VIII				
$\mathbf{Er^{3+}}$	0,890	VI	$4f^{11}$	${}^{4}I_{15/2}$	${}^{4}\mathrm{I}_{13/2}$	6400
	1,000	VIII		,	,	
Tm³⁺	0,880	VI	$4f^{12}$	$^{3}\mathrm{H}_{6}$	$^{3}\mathrm{H}_{5}$	8200
	0,990	VIII				
Yb ³⁺	0,868	VI	$4f^{13}$	${}^{2}\mathrm{F}_{7/2}$	${}^{2}\mathrm{F}_{5/2}$	10100
	0,98	VIII		,	,	

2.1.4 Структура REO₃

Једињење ScF₃ се издваја међу осталим трифлуоридима. Ово једињење је једино међу флуоридима са ретким земљама које кристалише у структурном типу ReO₃, који припада кубном кристалном систему, просторне групе $Pm\bar{3}m$, са једним молекулом по јединичној ћелији [39]. У кристалној структури овог типа катјони (Sc³⁺) заузимају Викофов положај 1*a* (0,0,0), док се анјони F⁻ налазе у Викофовом положају 3*d* (1/2,0,0) [54]. У оваквој структурној модификацији анјони формирају кубно густо паковање у коме су само 3/4 места заузета. Постоји једно празно место у центру јединичне ћелије. Услед велике октаедарске празнине, густина паковања овакве структуре је ниска и за ScF₃ густина паковања износи 47,7%.

Слика 5: Кубна ScF₃ кристална структура [55].

На Слици 5 је дат приказ структуре ScF₃. Катјони се налазе у теменима примитивне кубне ћелије са координационим бројем 6. Скандијум се налази у центру октаедра састављеног од јона флуора. Правилни ScF₆ октаедри, са катјоном у центру, спојени су у 3D оквир преко својих темена. Sc³⁺ представља једини октедарски катјон међу ретким земљама. Ова чињеница издваја ScF₃ у односу на остале REF₃, и такође чини његова хемијска својства прилично специфичним у интеракцији са другим материјалима, посебно са REF₃ и другим металним флуоридима.

Једињење ScF₃ карактерише велики енергетски процеп (Eg око 10, 5 Ev) [55] и висока хемијска отпорност. Међу неорганским флуоридима MF_m (m = 1-4), ScF₃ има највишу тачку топљења ($T_m = 1822 \pm 3 K$) [56]. При нормалном притиску, ScF₃ не показује полиморфне фазне трансформације у целом температурском интервалу све до тачке топљења, међутим, под притиском може доћи до трансформације из ReO₃ структуре у β – YF₃ или LaF₃ структуру.

2.2 Магнетна и електронска својства трифлуорида ретких земаља

2.2.1 Електронска структура јона ретких земаља

Када се налазе у кристалној структури, ретке земље се најчешће налазе у тровалентном (RE³⁺) или ређе двовалентном (RE²⁺) стању. Узимајући у обзир да су троваленти јони много чешће коришћени у истраживањима и имају дугу историју у оптичким и магнетним применама, у овој докторској дисертацији су детаљно описане карактеристике тровалентних јона.

Слика 6: а) Радијална зависност вероватноће налажења 4f, 5s, 5p и 6s електрона у функцији растојања језгра за јон Gd^{3+} [57], б) угаона зависност 4f таласних функција [58].

Електронска конфигурација основног стања тровалентних јона ретких земаља се може представити као [Xe] $4f^n$, где је са [Xe] $= 1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}$ $5s^25p^6$ означена електронска конфигурација племенитог гаса ксенона, а са *n* представљен број електрона у непопуњеној 4f електронској љусци. Вредност *n* је нула за јон La³⁺ и постепено расте до вредности 14 за јон Lu³⁺. На Слици 6а) је приказан квадрат радијалне расподеле електронских функција за јон Gd³⁺. Примећује се да је 4f орбитала јона ретких земаља постављена дубоко унутар атома и заклоњена од дејства кристалног поља и других околних утицаја спољашњим електронским орбиталама. Може се рећи да су 4f електрони "локализовани" унутар атома и не учествују директно у везивању са другим елементима приликом формирања једињења. На основу овога, закључује се да су енергетски нивои ових јона у кристалима веома слични као у случају слободног јона.

У низу лантаноида, од лантана до лутецијума, долази до смањивања јонског и атомског радијуса познато као контракција лантаноида. Непотпуно екранирање растућег наелектрисања језгра дуж низа ретких земаља узрокује лантаноидну контракцију таласних функција, која се одражава у смањивању јонског и атомског радијуса у чврстом стању. Јонски радијус јона Y^{3+} , који не спада у групу лантаноида али има хемијска својства слична лантану, налази се између радијуса јона Ho^{3+} и Er^{3+} . У Табели 1 дати су радијуси јона ретких земаља.

Угаона зависностост 4f таласних функција приказана је на Слици 6б). Облаци наелектисања су веома анизотропни са израженим мултиполима чије се величине и знаци драматично мењају са m_l . Ова анизотропија се јасно манифестује у магнетним особинама метала. Карактеристични магнетни момент сваког RE јона доводи до интеракције између тог јона и спољашњег примењеног магнетног поља H, проузрокујући интересантне магнетне и магнетно-оптичке карактеристике код једињења са ретким земљама [58].

Током година развијале су се разне методе нумеричке анализе за израчунавање енергетских стања слободних RE јона, тј. оних јона који нису окружени лигандима или кристалним пољем. Ове методе омогућавају процену мултиплицитета стања као и одређивање положаја енергетских нивоа побуђених електронских конфигурација у односу на основно стање. На основу прорачуна добија се да су побуђене конфигурације RE јона, попут $4f^{n-1}5d^1$, $4f^{n-1}6s^1$, одвојене од основног $4f^n$ стања енергетским интервалом реда 10^5 сm⁻¹ (Слика 7) [59].

Кулоново одбијање између еквивалентних 4f електрона унутар љуске доводи до раздвајања енергетских стања у термове које карактеришу карактеристични орбитални (L) и спински (S) момент. Терм са фиксним вредностима L и S има (2L + 1)(2S + 1) дегенерисана стања која се разликују по m_L и m_S пројекцији орбиталног и спинског момента. Таласна функција ових дегенерисаних стања дата је као $|\gamma LSm_Lm_s\rangle$, где је $-L \leq m_L \leq L$, $-S \leq m_S \leq S$, а индекс γ прави разлику између термова са истим L и S. Суседни термови унутар јона ретке земље раздвојени су међусобно енергетским интервалом реда $10^4 \,\mathrm{cm}^{-1}$ [60] (Слика 7).

За одређивање основног енергетског стања (основног терма електронске конфигурације 4f) примењују се Хундова правила и Паулијев принцип искључења. Прва два Хундова правила тврде следеће:

- 1. За дату електронску конфигурацију, терм са максималном вредношћу спина *S*, уз испуњавање Паулијевог принципа, има најмању енергију.
- 2. За дату вредност спина ($S = S_{max}$), терм са максималном вредношћу орбиталног момента L има најмању енергију.

Слика 7: Цепање енергетских нивоа слободног Ln³⁺ јона услед Кулонових, спинорбиталних и интеракција са магнетним пољем. Ефекат магнетног поља процењује се под претпоставком поља од 1Т.

Квантна дегенерација термова јона ретке земље уклања се спин-орбиталном интеракцијом W_{LS} чија је вредност реда $10^3 \,\mathrm{cm}^{-1}$. Ефективни хамилтонијан спинорбиталне интеракције који описује цепање терма са фиксним вредностима за Lи S може се написати у следећем облику:

$$\mathcal{H}_{\mathcal{LS}} = \xi \boldsymbol{L} \cdot \boldsymbol{S}, \tag{2.1}$$

где су L и S оператори орбиталног и спинског момента, редом, а ξ је константа спин-орбиталног купловања дефинисана добро познатом Голдшмитовом формулом [61]. Може се рећи да спин-орбитална интеракција W_{LS} одговара магнетној интеракцији између спинског магнетног момента и магнетног поља проузрокованог кретањем 4f електрона око језгра. Спин-орбитална интеракција цепа $^{(2S+1)}L$ термове на мултиплете окарактерисане укупним моментом J (са $|L-S| \leq J \leq L+S$) чије су таласне функције сферне функције представљене као $|J, M_J\rangle$. Сваки мултиплет је вишеструко дегенерисан у смислу пројекције угаоног момента M_J . Ова дегенерација може бити отклоњена спољашњим дејством као што су кристална, електрична или магнетна поља. У случају примене спољашњег магнетног поља, H, долази до потпуног скидања дегенерације и $^{(2S+1)}L_J$ мултитплет се цепа на укупно (2J + 1) еквидистантних нивоа. Енергетски интервал између одговарајућих нивоа одређен је интензитетом магнетног поља и вредношћу g-фактора. Хамилтонијан 2.1 се може написати као:

$$\mathcal{H}_{\mathcal{LS}} = \frac{1}{2} \xi \left(\boldsymbol{J}^2 - \boldsymbol{L}^2 - \boldsymbol{S}^2 \right).$$
(2.2)

За дијагоналне елементе матрице који дефинишу енергију мултиплета E добија се:

$$E(J) = \frac{1}{2}\xi[J(J+1) - L(L+1) - S(S+1)].$$
(2.3)

Одавде се може израчунати енергетска разлика између суседних мултиплета који имају исте вредности за *L* и *S* као:

$$E(J) - E(J-1) = \frac{1}{2}\xi[J(J+1) - J(J-1)] = \xi \cdot J.$$
(2.4)

Номенклатура мултиплета датог терма зависи од знака спин орбиталне константе купловања ξ . Код јона тешких RE³⁺ (од Tb³⁺ до Yb³⁺), код којих је fорбитала попуњена више од половине, ова константа има негативну вредност, тако да ће мултиплет са најмањом енергијом бити онај са највећом могућом вредношћу за укупни момент J за дато L и S, односно $J_0 = L_0 + S_0$. За јоне лаких RE³⁺ (од Ce³⁺ до Gd³⁺), код којих је f љуска попуњена мање од половине, константа ξ има позитивну вредност. У овом случају, мултиплет са најмањом енергијом ће бити онај који има најмању могућу вредност укупног момента J за дато L и S, тако да је $J_0 = |L_0 - S_0|$. Ово тврђење је познато као треће Хундово правило, које се може написати у следећем облику:

3. За орбитале попуњене мање од половине, стање са најмањом дозвољеном

вредношћу за момент J је најниже енергетско стање; за орбитале попуњене више од половине, стање са највећом дозвољеном вредношћу за момент Jје најниже енергетско стање.

Када је енергетска разлика између суседних нивоа мултиплета довољно велика у поређењу са k_BT , тада је насељен само енергетски најнижи мултиплет. Ово је обично случај код јона ретких земаља на собној и њој блиским температурама. Уколико то није случај, у разматрање физичких особина ретких земаља треба урачунати допринос и осталих компоненти.

На Слици 7 је приказана шема цепања енергетских нивоа слободног јона ретке земље [62]. Основни терм сваког RE тровалентног јона, као и први и први побуђени мултиплет основног терма у овој $4f^n$ електронској конфигурацији приказани су у Табели 1.

Класификација енергетских стања слободних јона ретких земаља заснована је на Расел-Саундерсовој (енг. *Russell-Saunderes*) апроксимацији спрезања момената (често се назива и нормално или *LS*-спрезање), тако да је енергетски размак између термова доста већи од размака између мултиплета услед спинорбиталне интеракције. Ова апроксимација је валидна за основни терм јона ретких земаља, док је уочено значајно одступање од *LS*-спрезања за ексцитована стања [63]. Ипак, *LS*-спрезање је и даље довољно добра апроксимација за рачунање енергетских спектара и за класификацију стања основне $4f^n$ конфигурације, као и за нижа стања првих побуђених $4f^{n-1}5d^1$ и $4f^{n-1}6s^1$ конфигурација слободног \mathbb{RE}^{3+} јона.

2.2.2 Парамагнетизам слободног јона ретке земље

Без урачунавања хиперфине структуре, нивои мултиплета означени са E_j су у основи енергетски нивои слободног јона ретке земље. За разумевање парамагнетизма јона ретких земаља велики значај има цепање ових нивоа у спољашњем магнетном пољу H.

Магнетизација ансамбла од N атома или јона ретких земаља дата је као извод слободне енергије F по пољу H као:

$$M = -\frac{\partial F}{\partial H},\tag{2.5}$$

имајући у виду израз за слободну енергију:

$$F = -\frac{N}{\beta} \ln \sum_{n} e^{-\beta E_n(H)}, \qquad (2.6)$$

18

где је са $E_n(H)$ представљена енергија нивоа датог јона у пољу H и $\beta = 1/k_B T$. На основу претходног, добија се да је [58]:

$$M = N \frac{\sum_{n}^{n} - \frac{\partial E_n}{\partial H} e^{-\beta E_n}}{\sum_{n}^{n} e^{-\beta E_n}}.$$
(2.7)

Ако се занемари мала дијамагнетна сусцептибилност, магнетни допринос укупном хамилтонијану дат је преко Земановог члана:

$$\mathcal{H}_{\mathcal{Z}} = -\mu_B (\boldsymbol{L} + g_0 \boldsymbol{S}) \cdot \boldsymbol{H}, \qquad (2.8)$$

где је μ_B Боров магнетон. Од сада, па надаље, у разматрањима је за жиромагнетни однос g_0 узета вредност 2. На основу пертурбационе теорије другог реда додатна енергија интеракције са магнетним пољем може се представити као [58]:

$$\delta E_n = -\mu_B \boldsymbol{H} \cdot \langle n | \boldsymbol{L} + 2\boldsymbol{S} | n \rangle + \sum_{m \neq n} \frac{|\langle n | \mu_B \boldsymbol{H} \cdot (\boldsymbol{L} + 2\boldsymbol{S}) | m \rangle|^2}{E_n - E_m}.$$
(2.9)

Проблем дегенерације решава се коришћењем базе $|LSJM_J\rangle$, чија је дегенерација потпуно уклоњена дејством спољашњег поља. У овој бази и унутар одређеног JLS мултиплета, Вигнер-Екартова теорема [64] имплицира сразмерност (L+2S) и J матричних елемената:

$$\langle LSJM_J | \boldsymbol{L} + 2\boldsymbol{S} | LSJM_J' \rangle = g(JLS) \langle LSJM_J | \boldsymbol{J} | LSJM_J' \rangle, \qquad (2.10)$$

где је д Ландеов фактор мултиплета дат као:

$$g = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}.$$
(2.11)

Унутар овог мултиплета, једначина 2.10 се може написати у концизнијем облику L + 2S = gJ, при чему је ефективни магнетни момент атома:

$$\boldsymbol{\mu} = g\mu_B \boldsymbol{J}.\tag{2.12}$$

За **J** различито од нуле, комбиновањем члана првог реда из једначине 2.9 са једначином 2.7 добија се магнетизација основног стања мултиплета као:

$$M(H,T) = Ng\mu_B JB_J(\beta g\mu_B JH), \qquad (2.13)$$

19

где је са В_J означена Брилуенова функција:

$$B_J(x) = \frac{2J+1}{2J} \coth \frac{2J+1}{2J} x - \frac{1}{2J} \coth \frac{1}{2J} x.$$
(2.14)

Ако је $g\mu_B JH$ мало у поређењу са $k_B T$, сусцептибилност је константна и дата је Киријевим законом:

$$\chi = \frac{M}{H} = \frac{N\mu^2}{3k_BT} = \frac{Ng^2\mu_B^2 J(J+1)}{3k_BT} = \frac{C}{T},$$
(2.15)

где је C Киријева константа³. Ова формула представља Киријев закон за слободне јоне ретких земаља чији основни ниво лежи доста дубље у односну на први побуђени ниво. Код свих јона ретких земаља, изузев јона Sm³⁺ и Eu³⁺, први ексцитовани нивои мултиплета поседују енергије које знатно прелазе k_BT при собној температури и због тога нису насељени. Из једначине 2.15 се може добити израз за магнетни момент изражен у јединицама Боровог магнетона:

$$\frac{\mu}{\mu_B} = g_J \sqrt{J(J+1)} = \sqrt{\frac{3\chi kT}{N\mu_B^2}}.$$
(2.16)

Ова формула даје добре резултате за све јоне ретких земаља осим за Sm³⁺ и Eu³⁺. Код ових јона први побуђени ниво мултиплета лежи релативно близу основног нивоа тако да допринос сусцептибилности ових јона не даје само основни ниво. Овде је потребно извршити поправку другог реда за ниво E_{J,M_J} . Недијагонални члан другог реда у изразу 2.9 представља парамагнетни допринос магнетној сусцептибилности χ који је независан од температуре, под условом да је термална насељеност побуђених стања занемарљива. Овај члан назива се Ван-Влеков парамагнетни допринос магнетизацији [65] и доста је мали код тешких RE јона, док је за прву половину лантаноидног низа дат као:

$$\chi_V = \frac{2\mu_B^2(L+1)S}{3(J+1)\Delta} \frac{N}{V},$$
(2.17)

где је са Δ представљена енергетска разлика основног и првог побуђеног мултиплета. Код једињења разматраних у овој дисертацији Ван-Влеков магнетизам изазван мешањем стања са различитим *J* неће имати значајну улогу, док ће са

³Уколико је $N = N_A$, тада Киријева константа $C = \frac{N_A J (J+1) g_J^2 \mu_B^2}{3k_B} = \frac{1}{8} g_J^2 J (J+1)$ и моларна магнетна сусцептибилност $\chi_m (\text{cm}^3) = \frac{1}{8T} g_J^2 J (J+1)$.

друге стране аналогни феномен мешања стања са различитим M_J , подељених услед дејства електричног кристалног поља бити од значаја.

Киријев закон у облику 2.15 се користи код једињења у којима се јони ретких земаља могу сматрати слободним јонима. Постоји доста ситуација у којима Киријев закон није строго задовољен. Разлог одступања може бити присуство енергетског нивоа чија се насељеност значајно мења током мереног температурског интервала, или разлог могу бити магнетне интеракције које могу настати између парамагнетних јона. У најједноставнијој апроксимацији, овакво понашање се изражава малом модификацијом Киријевог закона у Кири-Вајсов закон [65, 66]:

$$\chi = \frac{C}{T - \theta},\tag{2.18}$$

где корекциони члан θ представља Кири-Вајсову константу која се често назива парамагнетна или Киријева температура и која узима у обзир и магнетне и електричне интеракције између магнетних јона у парамагнетицима. У првој апроксимацији параметар θ је одређен интегралом измене и бројем најближих суседа [64].

2.2.3 Јони ретких земаља у кристалном пољу

Када се јони ретке земље убаце у решетку материјала домаћина, они постају изложени дејству кристалног поља околних атома (лиганада). Присуство кристалног поља модификује енергетске нивое и таласне функције слободног јона, и одређивање тих модификација представља предмет истраживања теорије кристалног поља (енг. *Crystal Field Theory*, CFT) [67–70].

С обзиром да су валентни 4f електрони заклоњени спољашњим 5s и 5p електронима, слабо су изложени дејству поља лиганада у кристалу (ова ситуација одговара случају "слабог кристалног поља" [71]). Због тога је члан спинорбиталне интеракције у хамилтонијану слободног јона доминантан у односу на додатни хамилтонијан кристалног поља ($W_{CF} < W_{LS}$). Ово доводи до благе пертурбације $^{2S+1}L_J$ стања RE³⁺ јона када се угради у кристал. Кристално поље, дакле, доводи до благог помака у енергији ових стања и изазива додатно цепање нивоа (Слика 9). Међутим, померање и цепање нивоа под дејством поља је реда $10-100 \,\mathrm{cm}^{-1}$ што је занемарљиво у односу на енергетски размак између различитих мултиплета, па су оптички спектри RE³⁺ јона прилично слични онима који се очекују за слободне јоне. У овом случају кристално поље не нарушава шему

грађења енергетског спектра слободног јона и може се рачунати као пертурбација која скида (2J + 1) дегенерацију мултиплета и условљава слабо мешање стања са различитим J (пертурбација другог реда). Стога, може се рећи да је J "добар" квантни број и да се 4f електрони ретких земаља у првој апроксимацији понашају као слободни јони са малим додатним цепањем услед дејства поља [72].

Слика 8: Диекеов дијаграм енергетских нивоа тровалентних јона ретких земаља [59].

На Слици 8 је приказан познати Диекеов (енг. Dieke) дијаграм енергетских нивоа тровалентних јона лантаноида [59]. Приказани нивои добијени су експериментално из оптичких спектара појединачних јона инкорпорираних у LaCl₃ кристал. Ширина сваког стања указује на величину цепања у кристалном пољу, док енергија на средини сваке линије даје приближан положај одговарајућег ${}^{2S+1}L_J$ нивоа слободног јона. Овај дијаграм се може применити на јоне у готово сваком кристалу будући да је максимална варијација положаја ових нивоа неколико стотина ст⁻¹. Сваки ниво, на Слици 8 обележен са *J*, се цепа на више поднивоа под утицајем кристалног поља (Штарково цепање). Штарково цепање енергетских нивоа је резултат Штарковог ефекта, који описује померање и цепање спектралних линија услед дејства спољашњег статичког електричног поља, што је у овом случају кристално поље материјала домаћина. Број могућих Штаркових нивоа зависи од квантног броја укупног угаоног момента J датог енергетског нивоа и од броја електрона у разматраном јону [73]. Међутим, тачан број и ширина Штаркових нивоа зависе од симетрије и интензитета кристалног поља: што је виша симетрија то је мањи број новонасталих нивоа. Теоријом група може се извршити анализа броја насталих нивоа и степен њихове дегенерације [74]. Јачина кристалног поља не утиче на број нивоа и степен њихове дегенерације већ само на њихов положај на енергетској скали.

Понашање јона ретких земаља у присуству кристалног поља ће се битно разликовати у зависности од тога да ли је број електрона у непопуњеној 4f електронској љусци паран или непаран. Ове разлике у посматраним спектрима објашњавају се Крамеровом теоремом [74]. Према Крамеровој теореми, код јона са непарним бројем електрона у 4f електронској љусци, што доводи до полуцеле вредности укупног спина, орбитална дегенерација је потпуно уклоњена кристалним пољем ниске симетрије, пошто кристално поље директно утиче на орбитално кретање електрона. Спинска дегенерација се смањује "упаривањем" електрона са супротно оријентисаним спиновима, односно, јони ретких земаља прелазе из високо-спинског у ниско-спинско стање. Међутим, у овом случају остаје један додатни "неспарени" електрон у дегенерисаном стању. Таква дегенерација се не може уклонити ни кристалном ни орбиталном интеракцијом, једино може бити уклоњена присуством неког спољашњег магнетног поља (или изменског поља). Супротно овоме, за јоне са парним бројем електрона у 4f електронској љусци спинска дегенерација се може потпуно уклонити, јер се сви електрони могу међусобно упарити. Дакле, у кристалном пољу ниске симетрије, нивои Крамерових јона (јони са непарним бројем 4f електрона) цепају се у двоструко дегенерисана стања (Крамерови дублети), док се код не-Крамерових јона (јони са парним бројем 4f електрона), енергетски нивои цепају на недегенерисана, тј синглетна стања [53].⁴

У Табелама 2 и 3 приказан је број нивоа насталих за дато J у пољима различите симетрије [75]. У табелама су 32 кристалографске тачкасте групе груписане у а) кубни, б) хексагонални (садржи хексагоналне и ромбоедарске системе), ц) тетрагонални и у д) системе нижих симетрија (укључује орторомбичне, моноклиничне и триклиничне системе). Показано је да се тачкасте групе унутар исте категорије цепају на једнак број нивоа дат у табелама. Број троструко, двоструко и једноструко дегенерисаних нивоа (n_1 , n_2 , n_3) написан је испод укупног броја нивоа за кубну симетрију.

Табела 2: Це	пање нивоа са	целобројном	вредношћу Ј	Ιу	кристалном	пољу.
--------------	---------------	-------------	-------------	----	------------	-------

J	0	1	2	3	4	5	6	7	8	Опште
0	Ŭ	1	2	0	1	0	0	•	0	Правило
Кубни	1	1	2	3	4	4	6	6	7	
$(n_1 \ n_2 \ n_3)$	(001)	(001)	(110)	(201)	(211)	(301)	(312)	(411)	(421)	
Хексагонални	1	2	3	5	6	7	9	10	11	
Тетрагонални	1	2	4	5	7	8	10	11	13	
Ниже симетрије	1	3	5	7	9	11	13	15	17	2J + 1

Табела 3: Цепање нивоа са полуцелобројном вредношћу Ј у кристалном пољу.

T	1/2	3/9	5/2	7/2	0/2	11/2	13/2	15/2	18/2	Опште
5	1/2	5/2	5/2	1/2	5/2	11/2	10/2	10/2	10/2	Правило
Кубни	1	1	2	3	3	4	5	5	6	
Све остале групе	1	2	3	4	5	6	7	8	9	2J + 1/2

Присуство кристалног поља значајно мења карактер Земановог раздвајања мултиплета у односу на оно примећено код слободних јона. У кристалном пољу (у основи електростатичком) долази до делимичног скидања дегенерације мултиплета јона ретких земаља, тако да магнетно поље може изазвати само додатно

⁴Код конфигурација са непарним бројем 4f електрона сваки мултиплет са квантним бројем J цепа се на (J + 1/2) Крамерова нивоа у кристалном пољу било које симетрије ниже од кубне. За конфигурације са парним бројем електрона, мултиплет се цепа на максимум (2J + 1) нивоа под условом да је симетрија нижа од D_3 .

цепање тих нивоа који су у пољу одређене кристалне симетрије остали дегенерисани. На основу теорије поља познато је да дегенерисаност нивоа за кристале свих група симетрије осим кубичне не прелази два, тако да код оваквих система, магнетно поље може раздвојити дегенерисане нивое на само два поднивоа. За групе кубне симетрије, где постоје троструко и четвороструко дегенерисани нивои (Табела 3), магнетно поље цепа одговарајуће нивое на три, односно четири поднивоа. Раздвајање нивоа у присуству магнетног поља зависи од правца поља у односу на осу кристала. До потпуног раздвајања свих дегенерисаних нивоа долази уколико се правац поља поклапа са истакнутом осом кристала која је природна оса квантизације угаоног момента. Са друге стране, уколико је правац магнетог поља нормалан на ту осу, у првој апроксимацији доћи ће до раздвајања само неких нивоа и то у случају одређених група симетрије. Раздвајање нивоа у овом случају може значајно превазилазити раздвајање које би настало под дејством магнетног поља на нивое слободног јона са задатим $J(g\mu_BH)$ [72].

Уопштено, у кристалном пољу са осом симетрије коначног реда, квантни број M_J губи свој смисао. Уколико је овај квантни број приближно сачувао свој смисао, тада се датом поднивоу придружује нека вредност M_J допуштена симетријом датог кристалног поља, која се може одредити експериментално. Додатна енергија тог поднивоа дата је релацијом [72]:

$$\Delta E_{M_J} = g_J \mu_B M_J H. \tag{2.19}$$

На основу овога, двапут дегенерисани ниво се у присуству магнетног поља цепа на стање са $+M_J$ и $-M_J$ са разликом енергије од $2g_J\mu_B M_J H$.

Уколико магнетни квантни број губи свој смисао и одговарајућем стању не одговара ни једна вредност M_J , у том случају се таласне функције стања датог поднивоа могу представити као линеарна комбинација својствених функција у пољу цилиндричне симетрије као [64]:

$$\sum_{M_J} C_{M_J} |J, M_J\rangle.$$
(2.20)

У претходном изразу са C_{M_J} су представљене константе које се могу добити експериментално из спектроскопских мерења или из рачуна кристалног поља.

Од посебног интереса је раздвајање Крамерових дублета основног нивоа јона ретке земље у присуству магнетног поља. Новонастала стања оваквих дублета

могу се симболички представити као [72]:

$$|+\rangle = \sum_{M_J} |J, M_J\rangle, \qquad (2.21)$$

$$|-\rangle = \sum_{M_J} (-1)^{J+M_J} C_{M_J} |J, M_J\rangle.$$
 (2.22)

Уколико је магнетно поље паралелно оси кристала (за симетрију кристала узета z-oca), тад ће раздвајање мултиплета изазвано пољем H зависити само од матричних елемената J_z као и у случају слободног јона, тако да је у првој апроксимацији [64]:

$$\Delta E_{||} = 2g_J \mu_B |\langle +|J_Z|+\rangle |H| = 2g_J \mu_B H \sum_{M_J} (C_{M_J})^2 M_J = 2g_J \mu_B M_{eff} H = g_{||} \mu_B H, \quad (2.23)$$

где је са $g_{||}$ означен ефективни g фактор спектроскопског раздвајања дуж правца паралелног оси симетрије кристала. Са M_{eff} је означен ефективни магнетни квантни број. Овај број се може добити као линеарна комбинација магнетних бројева M_J слободног јона као [72].

$$M_{eff} = \sum_{M_J} (C_{M_J})^2 M_J.$$
 (2.24)

Посматрајмо сада јон ретке земље који се у присуству кристалног поља цепа на *i* Крамерових дублета (чест случај за јоне са непарним бројем 4*f* електрона) и нека је први побуђени мултиплет јако удаљен ($\Delta E \gg k_B T$) па се његов и утицај виших мултиплета на сусцептибилност могу занемарити. У овом случају се користећи једначину 2.7 може доћи до израза за сусцептибилност јона ретке земље у правцу осе кристалног поља [74]:

$$\chi_{||} = \frac{Ng_J^2 \mu^2}{k_B T} \frac{\sum_{i} M_{i\,eff}^2 \exp(-\frac{E_i}{k_B T})}{\sum_{i} \exp(-\frac{E_i}{k_B T})},$$
(2.25)

где су са E_i означени енергетски нивои (~ $100 \,\mathrm{cm}^{-1}$) Крамерових дублета у кристалном пољу. На основу претходне једначине може се приметити да прерасподела електрона по нивоима која се одвија при промени температуре може условити на нижим температурама знатна одступања од Киријевог закона.

Уколико је сада магнетно поље нормално на осу кристала z, у том случају

моменти јона ретке земље остају фиксирани и не могу се ротирати и поставити у правцу примењеног магнетног поља. Овде ће раздвајање мултиплета ΔE_{\perp} изазвано магнетним пољем бити једнако:

$$\Delta E_{\perp} = 2g_J \mu_B |\langle +|J_x| - \rangle H = -g_{\perp} \mu_B H, \qquad (2.26)$$

где је са g_{\perp} означен ефективни фактор спектроскопског раздвајања дуж правца нормалног на осу симетрије кристалног поља.

Слика 9: Приказ енергетске структуре Крамеровог Ln³⁺ јона у пољу лиганада. Ефекат магнетног поља је процењен за поље интензитета 1 Т.
2.2.4 Кири-Вајсов закон за разређене магнетне системе

Уколико у дијамагнетну матрицу убацимо магнетне јоне долази до стварања разређеног магнетног система. Ако се јони ретких земаља при изоморфној замени распореде на случајан начин у кристалу, у том случају се у апроксимацији средњег поља може доћи до израза за температурску зависност парамагнетне сусцептибилности у облику Кири-Вајсовог закона за дати разређени магнентни систем:

$$\chi(x,T) = \frac{C(x)}{T - \theta(x)} \approx \frac{C_0 x}{T - \theta_0 x}.$$
(2.27)

У претходној једначини
ни са x је означена концентрација магнетних јона, а с
аC(x)Киријева константа дата као:

$$C(x) = \frac{Ng^2 \mu_B^2 J(J+1)x}{k_B T} = C_0 x,$$
(2.28)

са C_0 и θ_0 су означне редом Киријева константа и Кири-Вајсова парамагнента температура за неразређени магнетни систем, односно кад је x = 1. Овде треба назначити да Кири-Вајсов закон важи у високотемпературским областима, где је испуњен услов $|\theta| \gg T$. Такође линеарна зависност Кири-Вајсове константе и Кири-Вајсове темепературе од концентрације магнетних јона x важи само у случају случајне (хомогене) расподеле магнетних јона у кристалној решетки. У супротном, уколико долази до груписања, кластеризације магнетних јона, вредности Кири-Вајсове температуре добијене фитовањем биле би знатно веће. На основу тога уколико постоји линерана зависност Кири-Вајсове температуре од концентрације, може се закључити да постоји хомогена расподела магнетних јона у кристалу.

2.2.5 Магнетна својства трифлуорида ретких земаља

Трифлуориди ретких земаља REF_3 и итријум-трифлуорид допиран ретким земљама $\text{YF}_3: \text{RE}^{3+}$ показују разноликост у погледу магнетних својстава и веома су атрактивни као моделни системи за теоријска испитивања магнетног уређења у изолаторима са ретким земљама, са присутним надметањем дипол-диполних и слабих изменских интеракција. Ова једињења имају већином парамагнетно уређење у целом температурском интервалу услед слабих изменских интеракција и добро заклоњених 4f електрона спољашњим 5s и 5p електронима. Код неких трифлуорида ретких земаља могуће је да се јаве магнетни прелази на ниским температурама уређења реда келвина. Одговарајући трифлуориди могу имати неколико могућих магнетних уређења. Верује се да је ово, на неки начин неуобичајено понашање, последица већ поменутог осетљивог уравнотежавања слабих изменских и дипол-диполних интеракција, на које чак може утицати и метод припреме узорака, где се као пример може навести једињење HoF₃ [76, 77].

Постоји више студија о магнетним својствима и магнетном уређењу тешких трифлуорида ретких земаља. Магнетна структура једињења ErF_3 одређена је из неутронских мерења, где се антиферомагнетни прелаз дешава на Неловој температури од $T_N = 1,05 \text{ K}$ [78]. На основу мерења магнетизације и специфичне топлоте, уочено је индуковање феромагнетних домена у једињењима TbF_3 [79] и DyF₃ [80] на температурама испод 3,95 K и 2,53 K, редом.

2.3 Појам и механизам луминесценције

Луминесценција се дефинише као феномен у коме се атоми, молекули, кристали или полимери побуђују неком врстом спољашње енергије, после чега се та апсорбована енергија спонтано емитује у виду фотона. Овај феномен се јавља у било ком стању материје, и може се десити и у неорганским и органским материјалима који се једним именом називају фосфори. Код већине неорганских чврстих материјала, луминесценција је повезана са нечистоћама и структурним дефектима који делују као окидачи, попут прелазних метала, актиноида, чистих јонских кристала, полупроводника, лантаноида или ретких земаља. Свака супстанца даје карактеристичан емисиони спектар луминесценције, па се добијени спектри могу користити за идентификацију непознатих елемената у материјалу.

У зависности од начина побуђивања, луминесценција се може поделити на: фотолуминесценцију, електролуминесценцију, радиолуминесценцију, катодолуминесценцију, хемилуминесценцију, биолуминесценцију, кристалолуминесценцију, триболуминесценцију, сонолуминесценцију и термолуминесценцију [81]. Од интереса у овој дисертацији је процес фотолуминесценције, који представља процес емисије светлости након апсорбовања фотона електромагнетног зрачења. У овом процесу се део енергије апсорбованог зрачења претвара у неки други вид енергије, најчешће у топлотну енергију, док се остали део емитује у виду фотона. Фотолуминесценција се може даље поделити на флуоресценцију и фосфоресценцију. Ова подела се може извршити на основу времена које протекне од побућивања неке супстанце до емисије светлости, тј. под флуоресценцијом подразумевамо фотолуминесценцију која није трајала дуже од времена озрачивања супстанције, док је фосфоресценција процес који траје неко време и након престанка побудног зрачења. Ова дефиниција није довољно прецизна већ у разматрање треба укључити и селекциона правила, тј. дозвољене и недозвољене прелазе. Флуоресценцијом, на основу тога, називамо дозвољене, високовероватне прелазе, док под фосфоресценцијом подразумевамо прелазе који по селекционим правилима нису дозвољени (мало су вероватни). У случају флуоресценције побуђена стања су краткоживећа (реда наносекунде), па се стиче утисак да након престанка побудног зрачења престаје и емисија, док се код фосфоресценције срећемо са дугоживећим стањима (реда милисекунде, негде чак и до неколико секунди) па је емисија светлости видљива и након престанка побудног зрачења.

Слика 10: Процес енергетског трансфера за а) Стоксову и б) анти-Стоксову луминесценцију.

Луминесцентни материјали су најчешће неоргански материјали који се састоје од матрице домаћина допиране нечистоћама (допантима). Концентрација нечистоћа је обично ниска с обзиром на то да при вишим концентрацијама ефикасност процеса луминесценције обично опада. Апсорпција енергије, која се користи за побуђивање луминесценције, одвија се или преко материјала домаћина или преко циљано допираних нечистоћа. Већином се емисија одвија на јонима нечистоћа, који се, када такође генеришу жељену емисију називају јони активатори. Уколико јони активатори слабо апсорбују побудно зрачење, додаје се друга врста нечистоћа (сензибилизатори) који апсорбују и преносе енергију до активатора. Овај процес укључује транспорт енергије кроз луминесцентне материјале. Често се боја емитованог зрачења може подесити одговарајућим одабиром јона нечистоће, без промене решетке домаћина у коју су дати јони инкорпорирани. Са друге стране, на позицију спектралних линија код већине активационих јона слабо утиче хемијско окружење. Овај ефекат је посебно изражен код јона ретких земаља због 4f електронских орбитала које представљају унутрашње орбитале заштићене од спољашњег утицаја атома матрице. Због овога луминесцентни материјали допирани јонима ретких земаља задржавају оптичке особине у кристалним решеткама различитих материјала домаћина.

Механизам луминесценције обухвата два процеса *down*-конверзију (енг. *down*conversion, DC) и *up*-конверзију (енг. *up*-conversion, UC) (Слика 10). Под DC, која се још назива и Стоксова луминесценција, подразумевамо процес претварања фотона веће у фотон ниже енергије, што је у складу са Стоксовим законом (енг. *Stokes law*). У процесу UC, који се назива и анти-Стоксова луминесценција, долази до емитовања фотона више енергије након апсорбовања два или више фотона мањих енергија у току секвенцијалне апсорпције и преноса енергије [11]. На основу претходног, фосфори се могу поделити на DC и UC фосфоре, који се обично разликују по врсти допираних јона. У овој дисертацији детаљно је описан процес *up*-конверзије јер је на том механизму заснован преглед представљених резултата.

Међу мноштвом материјала који се могу користити као фосфори, материјали допирани ретким земљама представљају веома важне и атрактивне материјале за примену у луминесценцији. За оптичке особине ретких земаља одговорни су валенти 4f електрони. Са богатом и јединственом структуром енергетских нивоа, која потиче од 4f конфигурације у унутрашњој љусци, Ln^{3+} јони могу испољити флуоресцентну емисију у виду уских линија преко унутрашњих 4f-4fили 4f-5d прелаза. Материјали допирани луминесцентним Ln^{3+} јонима испољавају високи луминесцентни квантни принос, уски пропусни оспег, дугоживећу емисију, велики Стоксов померај, луминесцентну осетљивост зависну од лиганада [11, 82]. На основу претходно наведеног, материјали допирани јонима лантаноида престављају обећавајуће материјале за примене у разним областима попут ласера, дисплеја, сензора, соларних ћелија, електролуминесцентних уређаја, и биомедицинских истраживања.

2.3.1 *f-f* прелази

Апсорпциона и луминесцентна спектроскопија представљају важне технике у проучавању лантаноидних система, с обзиром да омогућавају одређивање природних фреквенција јона лантаноида. На апсорпционим спектрима кристала допираних лантаноидима јављају се групе уских линија које одговарају електронским прелазима унутар 4f електронске љуске. Свака мала линија унутар дате групе одговара прелазу између два нивоа настала цепањем у кристалном пољу, док свака група (или трака у случају лантаноидних соли) одговара прелазу између два ^{2S+1}L_J нивоа слободног јона (или *J* подљуски). Ове линије су уске и слабог интензитета, док је таласна дужина одговарајуће групе линија веома слична за различите лантаноидне системе. Оштрина и независност положаја ових линија нису компатибилни са прелазима на побуђене нивое (нпр. $4f^{N-15d^1}$) с обзиром да су овакви прелази под већим утицајем околних јона. f – f прелазима одговарају уске и оштре линије услед добре заклоњености 4f електрона спољашњим 5s и 5p електронским љускама. За тумачење уочених прелаза могу се разматрати три механизма: магнетно-диполни прелази, индуковани електрично-диполни прелази и електрично-квадруполни прелази [83].

Магнетно-диполни прелази настају услед интеракције спектроскопски активног јона (јон лантаноида) са компонентом магнетног поља светлости кроз магнетни дипол [84]. Интензитет ових прелаза је слаб. Овај тип прелаза дозвољен је између стања исте парности. Иако код тровалентних јона лантаноида постоји само неколико оваквих прелаза, ови прелази су од важности јер је њихов интензитет у првој апроксимацији независан од окружења (лиганада) и могу се користити као стандарди интензитета.

Већина уочених оптичких прелаза у лантаноидним јонима представља индуковане електрично-диполне прелазе. Ови прелази су последица интеракције спекроскопски активног јона лантаноида са вектором електричног поља кроз електрични дипол. Ови прелази имају непарну парност и забрањени су по Лапортовом (енг. Laporte) правилу⁵. Међутим, ови прелази могу постати делимично дозвољени када је јон инкорпориран у неку матрицу због мешања орбитала различите парности услед неинверзионе симетрије кристалног поља. Дакле, одговарајући избор матрице домаћина (или локационе симетрије) може довести до тога да различити RE³⁺ прелази постану принудни електрично-диполни прелази. Како је интеракција са матрицом домаћином слаба, емисиони спектар јона је скоро независан од матрице у којој је дати јон уграђен, међутим, релативни интензитет емисије могућих оптичких прелаза може значајно да варира [81]. Неки од ових прелаза су јако осетљиви на симетрију кристалног поља, па могу имати велике интензитете чак и у случају малог одступања од неинверзионе симетрије. Дакле, прелази који су квантно-механички забрањени за слободан јон могу услед дејства кристалног поља да постану диполни прелази. Како су прелази забрањени по селекционим правилима време живота електрона у побуђеним стањима је реда милисекудне [17]. За израчунавање интензитета електрично-диполних прелаза није довољно само познавање таласних функција. Интензитети ових прелаза се могу описати помоћу познате Џуд-Офлетове теорије (енг. Judd-Oflet theory) [85, 86].

Са друге стране, електрично-кавдруполни прелази су слабијег интензитета од магнетно-диполних и индукованих електрично-диполних прелаза.

⁵На основу Лапортовог правила, електрично-диполни прелази су дозвољени само уколико су почетно и крајње стање различите парности, у супротном за стања исте парности ови прелази су забрањени. Парност стања је дата као $(-1)^l$ где је са l означен орбитални квантни број.

Диекеов дијаграм (Слика 8) може се користити као водич за грубу предикцију средње таласне дужине сваког ${}^{2S+1}L_J \rightarrow {}^{2S'+1}L'_{J'}$ прелаза за дати тровалентни јон лантаноида у било ком кристалном домаћину, и са друге стране може се користити за додељивање одређеног прелаза било којој апсорпционо/емисионој групи линија.

2.3.2 Up - конверзија

Као што је већ поменуто, *ир*-конверзија подразумева нелинеарне оптичке процесе које карактерише сукцесивна апсорпција два или више фотона побудног зрачења, преко средњих, дугоживећих енергетских стања, праћена емисијом излазног зрачења краће таласне дужине од таласне дужине побудне пумпе. Општи принцип *up*-конверзије први је независно формулисан од стране тројице научника средином 1960-тих [87]. Од касних 90-тих, наночестице које показују анти-Стоксову луминесценцију, односно UC наночестице, увршћене су као нова врста фотолуминесцентних наноматеријала [88]. У односу на традиционалну Стоксову фотолуминесценцију, UC наночестице показују јединствену способност да конвертују блиско инфрацрвено (NIR) ексцитационо зрачење у видљиво зрачење (VIS) краће таласне дужине током процеса *up*-конверзије. Предност ових процеса је тај што могу бити индуковани континуалним ласером мале снаге, око $10 - 10^3 \,\mathrm{W cm^{-2}}$. Захваљујући својим јединственим својствима, UC наночестице показују велики потенцијал у такозваним in vivo биомедицинским посматрањима, посебно у дубоким ткивима [89]. Употреба NIR зрачења за изазивање фотулуминесценције у UC честицама омогућава дубљи продор зрачења у биолошка ткива (мерено у cm), такође значајно смањује аутофлуоресценцију и испољава мању токсичност у поређењу са ултраљубичастим (UV) и VIS зрачењем. Дакле, UC наночестице могу бити врло моћан претварач NIR зрачења у UV или VIS области спектра, што је погодно за третмане дубоких ткива преко фотореактивних терапијских система, што је немогуће постићи употребом UV/VIS ексцитационих агенаса. Стечено знање у овој области примењује се у многим пољима науке попут фотохемије, биофизике, физике чврстог стања, физике материјала итд.

Богати енергетски нивои Ln³⁺ јона, пружају наночестицама допираним овим јонима огромне могућности за конверзионе процесе трансфера енергије између

јона сензибилизатора и јона активатора. *Up*-конверзиони порцеси се могу поделити у шест различитих категорија: апсорпција ексцитованог стања (енг. *Excited State Absorption*, ESA), UC пренос енергије (енг. *Energy Transfer Upconver*sion, ETU), лавина фотона (енг. *Photon Avalanche*, PA), двофотонска апсорпциона ексцитација (енг. *Two Photon Absorption Excitaton*, TPA), кооперативна сензитација (енг. *Cooperative Sensitization*, CS) и кооперативна луминесценција (енг. *Cooperative Luminescence*, CL) [90, 91]. У даљем тексту ћемо се фокусирати на три главна механизма (ESA, ETU, PA) који подразумевају секвенцијалну апсорпцију два или више фотона (Слика 11).

Слика 11: *Up*-конверзиони процеси: a) ESA; б) ETU; ц) PA; д) TPA; е) CS; ф) CL. На слици је црвеним стрелицама приказано ексцитационо зрачење, док је плавим стрелицама приказана UC конверзиона емисија.

Код механизма апсорпције ексцитованог стања (ESA), до ексцитације долази преко узастопне апсорпције једног или више фотона побуде од стране једног јона. Општи дијаграм ESA процеса за једноставан систем од три нивоа приказан је на Слици 11а). Уколико је ексцитациона енергија резонантна са енергијом прелаза из основног E0 у метастабилно побуђено стање E1, долази до апсорпције фотона и насељавања стања E1 кроз процес познат као апсорпција основног стања (енг. *Ground State Absorption*, GSA). Апсорпцијом другог фотона долази до прелаза јона из E1 у стање E2, након чега долази до UC емисије, која одговара E2 \rightarrow E0 оптичком прелазу. Овај процес је карактеристичан за материјале са ниском концентрацијом јона допаната.

UC пренос енергије (ETU) представља механизам сличан ESA с обзиром да код оба процеса долази до секвенцијалне апсорпције два фотона за насељавање метастабилног нивоа. Суштинска разлика између ова два процеса је та што се ексцитација у ETU остварује преносом енергије између два суседна јона. Сваки од два суседна јона апсорбује по један ексцитациони фотон исте енергије, при чему долази до попуњавања метастабилног нивоа E1 код оба јона (Слика 11б). Процесом нерадијативног преноса енергије са јона 1 на јон 2, долази до насељавања горњег нивоа E2 јона 2, док се јон 1 враћа назад у основно стање E0. Овај процес је јако осетљив на концентрацију јона допаната и карактеристичан је за материјале са вишом концентрацијом допаната.

На Слици 11ц) приказан је процес лавине фотона (РА) познат и као лавина апсорпције. До овог процеса долази уколико ексцитациони сноп нема довољну енергију да доведе до насељавања нивоа Е2 из основног стања. Међутим, овде постоји јака апсорпција побудног зрачења и преласка из стања Е1 у стање Е2 процесом ESA. У РА процесу, иницијално се енергетско стање Е1 првог јона (јон 1 са Слике 11ц) попуњава нерезонантним слабим GSA процесом. Потом јон 1 из стања Е1 прелази у стање Е2 резонантним ESA процесом. Тада долази до интеракције јона 1 који је у стању Е2 са суседним јоном (јон 2 са Слике 11ц) који се налази у основном стању Е0. Путем процеса унакрсне релаксације (енг. *Cross-Relaxation processes*, CR) јонског пара долази до настанка два јона у стању Е1, и овај процес се понавља. Као резултат понављања, један јон у метастабилном стању Е1 производи два јона у стању Е1, потом та два јона производе четири јона, који даље производе још осам итд. И дистрибуција јона у Е2 стању расте експоненцијално путем ESA процеса током времена стварајући потом UC емисију попут лавине, која одговара Е2 \rightarrow Е0 прелазу.

Ако се упореде ова три процеса (ESA, ETU, PA), ESA се показао као најмање ефикасан UC механизам. Већа ефикасност PA процеса је могућа уколико постоје донори са метастабилним, средњим нивоима који у овом случају имају улогу резервоара за складиштење зрачења пумпе. Међутим, PA процеси имају бројне недостатке, зависни су од снаге пумпе и имају спор одзив на ексцитацију (реда неколико секунди) услед бројних ESA и CR процеса. Насупрот ESA и PA, ETU процес је тренутан и не зависи од снаге пумпе, тако да је доста коришћен јер нуди високу ефикасност UC (за два реда величине већу у односу на ESA [87, 90]).

Важно је напоменути да процес UC у општем случају не укључује само апсорпцију два фотона. Могућа је апсорпција три или више фотона у циљу побуђивања нивоа са већом енергијом. Истраживања UC луминесценције се састоје у одабиру матрице домаћина и одговарајућих допаната (јони лантаноида) који се у добро бираним концентрацијама додају матрици у циљу добијања нових наноматеријала добро дефинисаних оптичких особина. Допанти су обично у форми локализованих луминесцентних центара. Избор одговарајућих јона допаната одређује таласну дужину и интензитет луминесценције. Треба још напоменути да се у материјалима са ретким земљама често употребљава истовремено допирање са различитим емисионим Ln³⁺ јонима ради добијања материјала жељених луминесцентних својстава, што се углавном лако постиже услед сличних хемијских особина свих лантаноида, а кристална структура допираног материјала остаје иста као и недопирана матрица.

Активатори

Јони лантаноида имају богате енергетске нивое и дугоживећа побуђена стања, која могу да делују као метастабилни енергетски нивои, што их чини идеалним кандидатима за UC луминесцентне материјале и од великог су интереса за производњу ових материјала. Заклоњеност 4f електрона попуњеним $5s^2$ и $5p^6$ подљускама резултира слабим електрон-фонон купловањем, које је одговорно за веома важне појаве у овим једињењима, попут оштрих и уских f - f електронских прелаза. Ови прелази су по Лапорту забрањени, што чини вероватноће ових прелаза мале, а ексцитована стања дугоживећим (до 0,1s). Ако изузмемо јоне La³⁺, Ce³⁺, Yb³⁺ и Lu³⁺, јони лантаноида обично имају више побуђених 4f енергетских нивоа. Сходно томе, UC емисија се теоретски може очекивати за већину ових јона. Међутим, услов за добијање корисне UC емисије је да енергетска разлика између сваког ексцитованог нивоа и његовог енергетски нижег међу-нивоа буде довољно мала да олакша апсорпцију фотона и пренос енергије укључен у UC процесе. Тако постављене енергетске нивое имају јони Er³⁺, Tm³⁺ и Ho³⁺, што их чини најчешће коришћеним активаторима. Брзина нерадијативног процеса релаксације између енергетских нивоа представља још један важан фактор који одређује насељеност ексцитационих нивоа и одређује ефикасност UC процеса. Показује се да се са повећањем енергетског процепа (разлика у енергији између побуђеног и првог нижег нивоа) смањује вероватноћа нерадијативних прелаза између побуђених стања јона [92]. У складу са овим, најефикаснији познати UC нанокристали добијени су са Er³⁺ и Tm³⁺ као активаторима.

Сензибилизатори

Растојање између два суседна јона активатора и попречни пресек апсорпције се сматрају најзначајнијим параметрима који утичу на UC процесе код једноструко допираних нанокристала. Висок степен допираности може довести до штетног процеса познатог као крос-релаксација, који води ка гашењу енергије ексцитације. Стога, концентрацију активатора треба одржавати довољно ниском и треба је прецизно одредити како би се избегао ефекат гашења. Поред тога, већина јона активатора има мали попречни пресек апсорпције, што проузрокује малу ефикасност пумпе. На основу овога, може се закључити да је ефикасност UC релативно ниска за једноструко допиране нанокристале.

У циљу побољшања ефикасности UC луминесценције, фосфорима се додају ко-допанти који се називају сензибилизатори. У референци [93] је дата табела у којој су наведени јони ретких земаља који се могу користити као активни ласерски медији, као и одговарајуће ретке земље које се могу користити као сензибилизатори за сваку од њих. Улога јона сензибилизатора је да апсорбују енергију побуде, и уместо да емитују флуоресценцију, они даље преносе енергију на главне допанте (активаторе) код којих се дешавају оптички прелази. Сензибилизатори треба да буду тако изабрани да не испољавају апсорпцију на таласној дужини од интереса за одговарајућу емисију. Такође, морају да имају такве апсорпционе траке да не узимају ексцитациону енергију од јона активатора [94].

Као сензибилизатор често се користи јон Yb³⁺. Овај јон поседује врло једноставну шему енергетских нивоа са само два 4f енергетска стања, основно ${}^{2}F_{7/2}$ и побуђено ${}^{2}F_{5/2}$. Са енергетском разликом између ова два стања од око 10000 cm⁻¹, овај јон има јаку апсорпцију у инфрацрвеној области. Додатно, прелаз ${}^{2}F_{7/2} \rightarrow$ ${}^{2}F_{5/2}$ је резонантан са већином f - f прелаза типичних UC лантаноида (Er³⁺, Tm³⁺ и Ho³⁺), чиме се олакшава ефикасност трансфера енергије до активатора. Концентрација јона сензибилизатора се обично одржава високом (~ 20 mol%), док је концентрација јона активатора обично ниска (< 2 mol%), у циљу минимизације крос-релаксационих губитака енергије [90].

Материјал домаћин

У циљу добијања једињења одговарајућих оптичких особина попут високе UC ефикасности и контролисаног емисионог профила врло је важан избор одговарајућег материјала домаћина. Како сви тровалентни јони ретких земаља имају сличне радијусе и сличне хемијске особине, њихова неорганска једињења се показују као одлични кандидати за материјале домаћине који су даље допирани луминесцентним јонима лантаноида. Добар материјал домаћин треба такође да има ниску фононску енергију решетке, што представља предуслов за максимално смањење нерадијативних губитака и повећање емисије зрачења. Тешки халогениди попут хлорида, бромида и јодида имају ниску вредност фононске енергије, нижу од $300 \,\mathrm{cm}^{-1}$, међутим, због своје изузетне хигроскопности нису погодни кандидати за ову примену. Са друге стране, оксиди показују високу хемијску стабилност, док су њихове фононске енергије релативно високе, обично изнад $500 \,\mathrm{cm}^{-1}$. На крају, флуориди ретких земаља попут REF₃ и AREF₄ (RE = ретка земља; A = алкал) представљају одличне кандидате за материјале домаћине за разне оптички активне Ln³⁺ јоне, с обзиром да поседују висок индекс рефракције, велику хемијску стабилност и прилично ниску фононску енергију (< $400 \,\mathrm{cm}^{-1}$), па су сходно томе најчешће коришћени материјали домаћини за UC процесе [11].

У истраживањима приказаним у овој дисертацији, као матрица домаћин изабран је YF₃. Ово неорганско једињење је врло погодно за ову примену услед хемијске и термалне стабилности, великог индекса преламања и оптичке транспарентности у широком спектру таласних дужина [95]. Сличан радијус јона Y^{3+} са другим Ln^{3+} јонима омогућава лаку инкорпорацију Ln^{3+} јона на место јона итријума у YF₃ матрици.

2.4 Луминесцентна термометрија

Емисиона својства многих луминесцентних материјала мењају се услед промене температуре, притиска, или због присуства неких хемијских врсти. Ова својства се већ дуго користе у развоју сензора заснованих на луминесценцији. За разлику од других метода, луминесцентна термометрија не захтева контакт макроскопске сонде са регијом од интереса за мерење. Ово представља огромну предност када је приступ узорку тежак, као у микроскопији и биолошким узорцима. На пример, луминесцентне наночестице се могу убацити у биолошку мету, а флуоресцентна микроскопија се може користити за прецизно испитивање температуре у различитим областима. Ова техника има велики потенцијал у медицини, на пример, за снимање ћелија рака које имају већу температуру у односу на просечну температуру здравих ћелија [96].

Луминесцентна термометрија је данас веома популарна метода за мерење

температуре и има велику примену у многим областима попут електричног и механичког инжењерства, биомедицине, нанотехнологије и микрофлуида. Такође, мноштво различитих материјала се може користити за конструкцију луминесцентних сензора. Избор материјала зависи од одговарајућег радног окружења, опсега радне температуре, прецизности, комплексности термометара и наравно цене. Веома често се јони лантаноида користе код температурних луминесцентних сензора захваљујући њиховој стабилности и лаком уочавању промена спектралних карактеристика. Поред тога, материјали допирани лантаноидима показују UC луминесценцију и могу бити одлични претварачи NIR у видљиву област спектра. NIR ексцитација доводи до мање самоапсорпције и расејања у биолошким ткивима, тако да је даљинско побуђивање лакше. Захваљујући овој особини, постоји све већи број студија које користе неорганске наночестице допиране лантаноидима за проучавање луминесцентне термометрије.

Када је реч о термометрији, мерна величина је термодинамичка температура, T. Луминесцентна термометрија не даје директно вредност температуре, већ даје индикацију (Q) која може бити однос интензитета емисије, луминесцентно време живота или померање линија (у зависности од примене, бира се одговарајући начин за одређивање температуре из луминесцентних мерења). Како би се проценио квалитет мерења и упоредиле различите врсте мерења, морају се одредити параметри који квантификују перформансе мерења. Најважнији су опсег мерења, апсолутна и релативна осетљивост, температурска резолуција, временска и просторна резолуција, као и поновљивост и репродуцибилност мерења. Дефиниција набројаних величина дата је у Табели 4 [97].

Мерни опсег мерења је одређен разликом највеће и најмање температуре која се може поуздано мерити. Апсолутна осетљивост термометра (S_a) рачуна се као однос промене променљиве и промене вредности температуре, и изражава се у јединици променљиве по келвину. Релативна осетљивост (S_r) дефинисана је као однос апсолутне осетљивости и вредности променљиве. Температурска резолуција (δT) представља најмању промену у температури која изазива промену у индикацији која се може опазити. Температурска резолуција зависи од карактеристика мерног система, као што је на пример шум, али зависи и од вредности променљиве. Просторна резолуција (δx_{\min}) се дефинише као најмања разлика између тачака мерења која може бити обухваћена температурском резолуцијом система. Поновљивост мерења представља прецизност мерења која се успоставља мерењем у кратком временском интервалу, под истим мерним условима који обухватају исту мерну процедуру, мерни систем, исте услове и оператора, као и локацију. Поновљивост мерења у ствари представља способност термометра да да исти резултат. Слично, репродуцибилност представља прецизност мерења под условима мерења који укључују поновљена мерења на различитим локацијама, користећи различите мерне системе и операторе. Приликом одабира методе за одређивање температуре треба обратити пажњу на све претходно наведене величине.

Термометријски параметар	Математичка дефиниција
Апсолутна осетљивост, S_a	$S_a = \left \frac{dQ}{dT} \right $
Релативна осетљивост, S_r	$S_r = \left \frac{1}{Q} \times \frac{dQ}{dT} \times 100\% \right $
Температурска резолуција, δT	$\delta T = \frac{\sigma}{S_a} = \frac{\sigma_r}{S_r}$
Просторна резолуција, δx_{\min}	$\delta x_{\min} = \frac{\delta T}{ dT/dx }$
Временска резолуција, δt_{\min}	$\delta t_{\rm min} = \frac{\delta T}{ dT/dt }$
Поновљивост, R	$R = 1 - \frac{\max \overline{Q} - Q_i }{\overline{Q}}$

Табела 4: Математичка дефиниција луминесцентних термометријских параметара.

Зависно од временске природе посматраних луминесцентних појава, методе за очитавање температуре из луминесценције могу се поделити у две групе, на временски независне (енг. *steady – state*, повезане са позицијом спектралних линија, интензитетом емисије, обликом емисионих линија, поларизацијом/анизотропијом) и временски разложене (повезане са временом живота материјала и временом успона живота). Најчешће се за одређивање температуре користе методе засноване на мерењу промене односа интензитета две емисионе линије и на промени времена живота.

2.4.1 Одређивање температуре на основу односа интензитета емисија - LIR метода

Ако узмемо у обзир велики број радова објављених у последњих двадесет година, термометрија базирана на мерењу односа интензитета две емисионе линије (енг. luminescence intensity ratio, LIR) представља најпопуларнији избор за луминесцентну термометрију. Ова метода је временски независна, самореферентна, показује велику осетљивост и може се користити код различитих материјала што је чини врло прилагодљивом. Грешке мерења су смањене код ове методе јер се користи однос апсолутних интензитета па се на тај начин елиминишу грешке настале као последица флуктуација интензитета побуде, промене ексцитационих линија услед промене температуре и неуједначене концентрације допаната. Ако је упоредимо са термометријом базираном на мерењу времена живота, која је такође врло заступљена метода, LIR метода је бржа, једноставнија, захтева мање софистицирану инструментализацију и може се лако прилагодити за термовизију [97]. LIR метода се може применити на узорке који садрже један или више луминесцентних центара. Узорци са једним емисионим центром су најчешће фосфори са јоном лантаноида као активатором, док у задње време расте употреба фосфора са прелазним металима као активаторским јонима.

LIR метода се најчешће примењује код тровалентних јона лантаноида на два суседна и термално куплована електронски побуђена стања. Два побуђена енергетска стања лантаноида могу се сматрати термално куплованим уколико је енергетска разлика између тих стања мања или једнака 2000 сm⁻¹ [29]. Таква енергетска разлика дозвољава прелазак електрона са нижег на виши енергетски ниво помоћу термалне енергије. У овом случају, оба нивоа деле електронску популацију на основу Болцманове расподеле као:

$$N_H = N_L \exp(-\Delta E/k_B T), \qquad (2.29)$$

где су са N_H и N_L означени бројеви електрона у вишем и нижем ексцитованом стању, са ΔE је означена енергетска разлика између ова два стања, k_B је Болцманова константа, док је са T означена апсолутна температура. На основу овога, однос интензитета луминесценције (LIR) две емисионе линије дат је као:

$$LIR(T) = \frac{I_H(T)}{I_L(T)} = c \frac{g_H A_H h \nu_H}{g_L A_L h \nu_L} \exp(-\Delta E/k_B T) = B \exp(-\Delta E/k_B T), \qquad (2.30)$$

где је са h означена Планкова константа, g представља дегенерацију побуђених нивоа, A спонтану стопу побуде, ν је емисиона фреквенција, док су са H и Lозначени редом више и ниже енергетско стање. Природни логаритам једначине 2.30 показује линеарну зависност обрнуто пропорционалну температури, што се може видети из следеће једначине:

$$\log(LIR) = \log(B) - \frac{\Delta E}{k_B} \frac{1}{T}.$$
(2.31)

На основу претходне релације се са графика зависности $\log(LIR)$ од $\frac{1}{T}$ могу израчунати $\log(B)$ и $\frac{\Delta E}{k_B}$.

На ниским температурама, више енергетско стање неће бити попуњено јер електрони немају довољну енергију да савладају енергетску баријеру, док је брзина радијационе релаксације са вишег на нижи енергетски ниво веома велика за блиска енергетска стања. Због тога, постоји доња температурна граница за употребу LIR методе која је пропорционална са ΔE тако да што је мања енергетска разлика између нивоа, то је нижа температура која се може користити. Са друге стране, како расте температура, попуњава се више енергетско стање и интензитет емисије са овог стања постепено расте на рачун емисије нижег енергетског стања. Међутим, истовремено долази до слабљења обе емисије услед температурског гашења док се једна од њих или обе потпуно не угасе. На горњу температурну границу највише утиче фононски спектар матрице домаћина и врста лантаноидног јона. Треба напоменути да се LIR метода може користити код било које емисије која потиче од два термално куплована енергетска нивоа.

Глава 3

Експериментални део

3.1 Предмет и циљ рада

Истраживања наноматеријала допираних јонима ретких земаља постају све значајнија захваљујући њиховим специфичних електричним, хемијским, магнетним и оптичким својствима која ове материјале чине веома атрактивним за бројне примене.

Предмет истраживања ове докторске дисертације је једињење итријум-трифлуорида допирано јонима ретких земаља. Методом добијања чистих флуорида, флуоридизацијом одговарајућих оксида ретких земаља амонијум хидроген-дифлуоридом, синтетисане су две групе узорака:

- серија чврстих раствора: Yb_xY_{1-x}F₃ (x = 0,01; 0,03; 0,05; 0,1; 0,25; 0,5; 0,7; 0,9 и 1);
- серија чврстих раствора: YF₃:Yb/Ln (Ln = Er, Tm, Ho).

У циљу карактеризације наведених узорака вршено је испитивање:

- структурних и микроструктурних својстава рендгеноструктурном дифрактометријом и скенирајућом електронском микроскопијом;
- магнетних својстава помоћу SQUID магнетометрије;
- оптичких својстава фотолуминесцентном спектроскопијом.

У овом делу докторске дисертације описан је поступак синтезе флуорида ретких земаља флуоридизацијом одговарајућих оксида амонијум хидроген-дифлуоридом, а након тога дат је опис експерименталних метода коришћених за карактеризацију структурних, магнетних и луминесцентних својстава синтетисаних материјала, као и карактеризација коришћених мерних уређаја.

3.2 Синтеза

За добијање чистих флуорида ретких земаља одговарајућих димензија и морфологије користе се разне методе синтезе [98–100]. У новије време су доста заступљене такозване "меке" хемијске методе синтезе (енг. *soft chemical methods*), где се посебно издвајају сол-гел, хидротермална, солвотермална, метода распршивања и друге. Иако ове методе имају доста предности, врло су осетљиве и захтевају строгу контролу параметара, па је традиционална метода синтезе у чврстој фази (енг. *solid state reaction*) и даље конкурентна и широко коришћена.

Уобичајен метод синтезе безводних трифлуорида је флуоридизација одговарајућих оксида са: флуором (F₂), гасом флуороводоником (HF), флуороводоничном киселином (HF), амонијум флуоридом (NH₄F) и амонијум хидроген-дифлуоридом (NH₄HF₂) [101, 102]. Од поменутих агенаса, флуор и флуороводоник спадају у корозивне и отровне гасове и рад са њима захтева сложен дизајн реактора. Код ових реакција постоји могућност заостанка оксида у новонасталом узорку. Флуороводонична киселина је такође врло корозивна, док је амонијум флуорид хигроскопан. Контакт водене паре и флуорида ретких земаља треба избегавати, јер остаје могућност контаминације кисеоником услед пирохидролизе флуорида [102]. Са друге стране, амонијум хидроген-дифлуорид је јефтин, лак за употребу и целокупан поступак је једноставан и не захтева компликовану и скупу опрему за реализацију. Флуоридизација помоћу NH₄HF₂ се управо због своје једноставности и економичности показала као најпогоднија и највише коришћена метода за добијање безоксидних флуорида.

3.2.1 Флуоридизација оксида ретких земаља амонијум хидроген-дифлуоридом

У раду је проучавана синтеза флуорида ретких земаља реакцијом одговарајућих оксида и амонијум хидроген-дифлуорида. Из литературе је познато да се флуоридизација оксида одвија на температури од око 300°C, у ваздуху, на основу следеће реакције [101]:

$$RE_2O_3 + 6NH_4HF_2 \rightarrow 2REF_3 + 6NH_4F + 3H_2O.$$
 (3.1)

На овој температури долази до испаравања NH_4F и H_2O заједно са вишком NH_4HF_2 и остаје само супстанца REF_3 у облику праха. У току реакције флуоридизације могу се јавити различита интермедијарна једињења, и за сада не постоји формиран договор око стварног тока реакције. Током загревања, флуоридизација оксида ретких земаља се највероватније дешава у два корака, кроз формирање два амонијум RE-флуорида, $(NH_4)_3RE_2F_9$ и $NH_4RE_2F_7$. Детаљна синтеза одговарајућих чврстих прахова приказана је у поглављу Резултати и дискусија.

Сви чврсти раствори коришћени у овом истраживању синтетисани су у Лабораторији за теоријску физику и физику кондензоване материје у Институту за нуклеарне науке "Винча".

3.3 Рендгенска дифрактометрија праха

За испитивање структуре кристалних узорака најпогодније је употребити дифракционе методе код којих је таласна дужина упадног зрачења упоредива са међураванским растојањима кристала. Међу њима најзаступљенија је метода рендгенске дифракције (енг. X-Ray Diffraction, XRD) чија се предност огледа у једноставности, тачности, брзини и чињеници да може бити примењена на широк спектар материјала. Ова метода је врло погодна јер спада у недеструктивне методе па узорак након испитивања остаје сачуван за даљу анализу. Може се користити и код монокристалних и код поликристалних узорака. Потребна је врло мала количина материјала, од 2 до 20 mg, како би се извршила анализа материјала овом методом. Основни недостатак рендгенске дифракције је тај што се не може користити код веома малих кристала, нанометарских димензија, када је потребно користити електронску дифракцију, као ни код узорака који су сачињени од веома различитих атома у односу на атомски број Z, и у том случају је адекватније користити неутронску дифракцију.

Рендгенска дифракција на поликристалном прашкастом узорку се користи за идентификацију присутних кристалних фаза, одређивање масених удела кристалних фаза у узорку (квантитативна анализа), за анализу несавршености, одређивање кристалне структуре (одређивање тачних позиција атома унутар јединичне ћелије датог кристала), као и за анализу микроструктурних параметара као што су величина кристалита и микроструктурно напрезање. Рендгенска дифракција се заснива на дифракцији рендгенских зрака на еквидистантним равнима у кристалу. До дифракције рендгенских зрака на материјалу долази уколико је задовољен Брагов закон формулисан једначином:

$$2d\sin\theta = n\lambda,\tag{3.2}$$

где је d међураванско растојање за одговарајућу фамилију равни, θ угао под којим рендгенско зрачење пада на одговарајућу фамилију равни, n ред дифракционог максимума и λ таласна дужина упадног рендгенског зрачења.

Постоје разне методе за утачњавање кристалне структуре (итеративно одређивање структуре непознатог узорка на основу познате структуре која се налази у бази података) из добијеног рендгенског дифрактограма. Данас се најчешће користе технике засноване на методи коју је крајем шездесетих година прошлог века развио Ритвелд [103]. Ритвелдова метода се у почетку користила за структурно утачњавање података добијених неутронском дифракцијом, да би десетак година касније почела широка примена ове методе код анализе података добијених рендгенском дифракцијом. Постоји доста кристалографских софтвера који подржавају Ритвелдово утачњавање профила. Један од таквих програмских пакета је и $FullProf^1$ пакет, коришћен у овој дисертацији.

3.3.1 Ритвелдова метода профилног утачњавања

Кристалну структуру испитиваног материјала сматрамо решеном (одређеном) када је решен облик њене јединичне ћелије, нађена просторна група симетрије и одређен распоред атома по кристалографским позицијама у јединичној ћелији. Одређивање структуре материјала из снимљеног дифрактограма није нимало једноставан процес. Добијени дифрактограм представља једнодимензионалну пројекцију тродимензионалне решетке у функцији једног параметра, Браговог угла θ . Најзаступљенија техника за решавање структуре кристала из дифрактограма заснована је на Ритвелдовој методи.

Ритвелдова метода је метода за утачњавање целог дифрактограма праха и захтева познат или бар претпостављен структурни модел од ког започиње утачњавање, дакле не може се користи за утачњавање структуре потпуно непознатих материјала. Приликом утачњавања претпостављеног структурног модела поред карактеристика испитиваног узорка треба узети у обзир и карактеристике мерног уређаја. Ова метода се заснива на методи најмањих квадрата

¹Овај програм је бесплатан и може се преузети са интернета: https://www.ill.eu/sites/fullprof/.

која се примењује све док се не добије најбоље поклапање између измереног Y_i^{izm} и израчунатог Y_i^{izr} интензитета претпостављеног структурног модела. У вредност за Y_i^{izm} урачунат је интензитет позадинског зрачења Y_i^{bkg} , као и допринос од m преклапајућих индивидуалних Брагових максимума у тачки $2\theta_i$ на дифрактограму. Профил индивидуалног дифракционог максимума (пика) описан је следећом функцијом [104]:

$$Y_i^{izr} = Y_i^{bkg} + \sum_{k=1}^m I_k \Omega_k (2\theta_i - 2\theta_k) = Y_i^{bkg} + \sum_{k=1}^m const_k F_k^2 \Omega_k (2\theta_i - 2\theta_k).$$
(3.3)

У претходној једначини са I_k је означен интегрални интензитет максимума који се јавља на углу $2\theta_i$, са Ω_k одговарајућа нормализована функција, док F_k представља структурни фактор. Процедура утачњавања се своди на тражење минимума функционела датог као [104]:

$$\Phi = \sum_{i=1}^{n} w_i (Y_i^{izm} - Y_i^{izr})^2, \qquad (3.4)$$

где је са w_i означена статистичка тежина, а сумирање се врши по свим мереним тачкама дифрактограма којих има n. Функционел Ф представља сложену површ у вишедимензионалном простору која зависи од више променљивих. Овде постоји пуно лажних локалних минимума и само један прави глобални минимум, тако да се цела процедура утачњавања заснива на његовом тражењу. Да ли ће процес конвергирати или не зависи од задатих почетних параметара. Уколико вредности задатих параметара нису близу експерименталних процес ће дивергирати и треба наћи нове почетне параметре.

Код ове методе врло је битно изабрати одговарајућу функцију профила која најбоље описује реалан профил пика који представља комбинацију инструменталних ефеката и својства самог узорка, посебно његова микроструктурна својства. Код рендгенске дифракције пик је врло сложен и најбоље се описује Војтовом функцијом која представља конволуцију Лоренцове L(x) и Гаусове G(x)функције дате као:

$$V(x) = L(x) \otimes G(x) = \int_{-\infty}^{+\infty} L(x-u)G(u)du.$$
(3.5)

Одређивање конволуције ове две функције је веома сложен процес па се процедура поједностављује тако што се користи линеарна комбинација Гаусове и Лоренцове функције, позната као псеудо-Војтова функција (скраћено pV од pseudo-Voigt):

$$pV(x) = \eta L(x) + (1 - \eta)G(x), \qquad (3.6)$$

где η представља параметар мешања Гаусове и Лоренцове функције. Параметар η једнак је јединици за чисту Лоренцову функцију, и нули за чисту Гаусову функцију. L(x) и G(x) имају исте полуширине пика H. Поред ове функције у програмима за моделовање доступне су и неке друге функције: модификована Лоренцова функција, функција Пирсона VII, трострука псеудо-Војтова функција, Томпсон-Кокс-Хастигсова псеудо-Војтова функција итд.

Томпсон-Кокс-Хастигсова псеудо-Војтова функција (енг. *Thompson-Cox-Hast*ings pseudo-Voight, TCH-pV) је функција која се од обичне pV функције разликује по томе што се код ње полуширина пика H и параметар мешања η рачунају на следећи начин [105]:

$$H = \left(\sum_{i=0}^{5} a_i H_G^{5-i} H_L^i\right)^{1/5}, \qquad (3.7)$$

$$\eta = \sum_{i=1}^{5} b_i \left(\frac{H_L}{H}\right), \qquad (3.8)$$

где су са a_i и b_i означени коефицијенти добијени нумеричком апроксимацијом. Ова функција се доста користи јер има могућност одвајања доприноса Гаусове и Лоренцове функције функцији профила пика.

Слагање између измерених и израчунатих профила може се пратити помоћу вредности R-фактора или фактора доброте. Најчешће коришћени фактори су [104]:

• Профилни фактор:

$$R_{p} = 100 \frac{\sum_{i=1}^{n} |Y_{i}^{izm} - Y_{i}^{izr}|}{\sum_{i=1}^{n} (Y_{i}^{izm})^{2}}$$
(3.9)

• Тежински профилни фактор:

$$R_{wp} = \left(\frac{\sum_{i=1}^{n} w_i \left|Y_i^{izm} - Y_i^{izr}\right|^2}{\sum_{i=1}^{n} w_i \left(Y_i^{izm}\right)^2}\right)^{1/2}$$
(3.10)

• Интегрални Брагов фактор:

$$R_B = \frac{\sum_{i=1}^{m} \left| I_i^{eksp} - I_i^{izr} \right|}{\sum_{i=1}^{n} I_i^{eksp}},$$
(3.11)

• Структурни фактор:

$$R_{F} = \frac{\sum_{i=1}^{m} \left| F_{i}^{eksp} - F_{i}^{izr} \right|}{\sum_{i=1}^{n} \left| F_{j}^{eksp} \right|} = \frac{\sum_{i=1}^{m} \left| \sqrt{I_{i}^{eksp}} - \sqrt{I_{i}^{izr}} \right|}{\sum_{i=1}^{n} \left| \sqrt{I_{j}^{eksp}} \right|}.$$
(3.12)

У претходним изразима су са I_i^{eksp} и I_i^{izr} означени интегрални интензитети експерименталног и израчунатог *i*-тог дифракционог пика. Сумирање се врши по свим дифракционим пиковима којих има укупрно m.

Профилни фактори R_p и R_{wp} показују квалитет утачњавања на целом дифрактограму по свим тачкама, док фактори R_B и R_F показују поклапање добијеног структурног модела са реалном кристалном структуром. Поред датих R фактора, треба обратити пажњу на криву која представља разлику између експерименталног и израчунатог дифрактограма. Понашање ове криве и њено одступање од праве линије може указивати на неке грешке попут лоше описаног профила, нетачног положаја дифракционог максимума, мањег или већег интензитета пика итд. Приликом процеса утачњавања треба тежити што мањим вредностима Rфактора. Утачњавање се може прекинути уколико се вредност ових фактора престане мењати или је та промена незнатна од итерације до итерације.

Као основи критеријум за правилност утачњавања кристалне структуре посматраног узорка можемо сматрати кристално-хемијску коректност добијеног структурног модела. Овде подразумевамо да добијене дужине и углови треба да буду у границама норми за дати атом, да приликом утачњавања окупационих фактора (представљају заузетост положаја атома или јона) мора бити задовољена електронеутралност кристалне решетке, параметри померања атома не смеју бити негативни нити да одступају много од вредности за дати атом или јон.

Постоји више софтвера који се могу користити за рендгеноструктурну анализу направљених узорака. Већина ових програмских пакета подржава Ритвелдово утачњавање профила. Неки бесплатни пакети поред *FullProfa* су и *GSAS*, *Rietan*, *PowderCell*... За утачњавање кристалне структуре помоћу *FullProf* пакета потребно је да знамо приближне вредности параметара елементарне ћелије, координате атома као и просторну групу. Параметре за утачњавање можемо поделити у три групе. У прву групу можемо сврстати структурне параметре у које спадају: фактор скале, параметри елементарне ћелије, фракционе координате, изотропни и анизотропни параметри померања атома, окупациони параметри. Друга група обухвата профилне параметре попут нуле бројача, параметара асиметрије, преферентне оријентације, параметара за описивање базне линије, параметара полуширине рефлексија, параметара мешања Гаусовог и Лоренцовог профила. На крају, ту су и микроструктурни параметри за описивање величине кристалита и микронапрезања.

Уколико нам је познат структурни модел и имамо добре почетне вредности удела позадинског зрачења, знамо параметре јединичне ћелије и профилне параметре, Ритвелдово утачњавање структурних параметара може да почне. Ритвелдовом анализом могу се добити структурни подаци (распоред атома, окупациони фактори, параметри елементарне ћелије, параметри померања атома) и микроструктурни параметри (величина кристалита и микронапрезање).

Слика 12: : Рендгенски дифрактометар за прах Philips PW 1050.

Подаци за дифракциону анализу, за узорке обрађиване у овој дисертацији, прикупљани су на собној температури на аутоматском дифрактометру за прах

Рhilips PW 1050 (Слика 12) чији се рад заснива на рефлексионој Браг-Брентано геометрији. Уређај користи рендгенску цев са бакарном анодом, СиК $\alpha_{1,2}$ зрачења таласне дужине $\lambda = 1,54178$ Å, са Ni филтером. Уређај поседује сцинтилациони детектор. За утачњавање кристалне структуре направљених узорака коришћени су подаци прикупљени на дифрактометру у опсегу 2 θ од 10° – 120° са кораком од 0,02° и експозицијом од 12 s по кораку. Ритвелдова анализа добијених резултата урађена је у компјутерском програму *FullProf Suite* у *WinPLOTR* окружењу.

Као почетни параметри утачњавања за вредности јединичних ћелија и положаја атома узети су подаци доступни у литератури. Базна линија одређена је полиномом шестог степена. За описивање профила дифракционих максимума коришћена је Томпсон-Кокс-Хастингсова (ТСН) псеудо-Војтова функција. Услед ефекта величине кристалита и микронапрезања на ширину дифракционих пикова коришћени су редом модел сферних хармоника и модел квадратичне форме у реципрочном простору. За процену инструменталног ширења пикова коришћена је инструментална резолуциона функција чији су параметри одређени из дифрактограма LaB₆ стандарда.

3.4 Скенирајућа електронска микроскопија

Скенирајући електронски микроскоп (енг. Scanning Electron Microscope, SEM) представља врсту електронског микроскопа који користи фокусирајући сноп високоенергетских електрона за генерисање различитих сигнала на површини чврстих узорака. Сигнали који потичу из интеракције електрона са узорком пружају информације о узорку укључујући спољашну морфологију (текстура узорка), хемијски састав, као и кристалну структуру и оријентацију материјала који чине посматрани узорак. Резолуција скенирајућих електронских микроскопа може бити и неколико нанометара, док раде на увећањима од 10 до 300000 пута [106].

Убрзани електрони у SEM-у поседују велику кинетичку енергију и приликом удара тог електронског снопа о површину узорка јављају се различити ефекти који се користе за анализу површине узорка (Слика 13). Приликом интеракције упадног снопа са електронским омотачем и атомским језгром узорка може доћи до настанка секундарних електрона (који производе SEM слике), повратно расејаних електрона (енг. BSE и BSED, користе се за одређивање кристалне структуре и оријентације минерала), фотона (карактеристични Х-зраци), видљиве светлости и топлоте. Најчешће се користи техника детекције секундарних електрона, којих има пуно, малих су енергија и представљају електроне избијене из електронског омотача атома узорка услед нееластичних судара са примарним електронима. Еластичним одбијањем примарних електрона приликом судара са атомским језгром узорка настају повратно расејани електрони. Ови електрони имају високу енергију. Секундарни и повратно расејани електрони се обично користе за снимање узорака. Секундарни електрони служе за приказивање морфологије и топографије узорка, док повратно расејани електрони најбоље илуструју контраст у саставу у вишефазним узорцима (користе се за брзо разликовање фаза). До настанка рендгенских зрака долази услед нееластичног расејања упадних електрона на електронима унутар одређене љуске атома испитиваног узорка. Приликом враћања побуђених електрона у нижа енергетска стања, долази до емитовања рендгенских зрака одређене таласне дужине, који су карактеристични за дати елемент. Ово представља основу методе енергетски дисперзионе спектрометрије (енг. Energy Dispersive X-ray Spectrometry, EDX). Скенирајућа електронска микроскопија важи за недеструктивну методу, односно, Х-зраци генерисани интеракцијама електрона не доводе до смањења запремине узорка, тако да је могуће анализирати исти узорак више пута.

Слика 13: Интеракција снопа електрона са узорком [107].

Шема једног SEM уређаја дата је на Слици 14. SEM уређаји имају најмање један детектор (обично је то детектор секундарних електрона), док већина има и додатне детекторе. Специфичне могућности одређеног инструмента зависе од врсте детектора које поседује. Овај инструмент има широку примену у проучавању чврстих материјала. Већина SEM апарата је једноставна за руковање и већина узорака захтева минималну припрему пред снимање. За већину примена прикупљање података је веома брзо (око 5 минута по слици) и подаци се генеришу у дигиталном облику што је од велике важности за пренос и манипулацију подацима. Што се тиче неких ограничења, испитивани узорци морају бити у чврстом стању и ограничених димензија како би стали у микроскопску комору. EDX детектори на SEM-у не могу детектовати лаке елементе попут водоника, хелијума и литијума, док већина не детектује елементе са атомским бројем мањим од 11. Када се ради са материјалима који су електрични изолатори, потребно их је претходно прекрити танким слојем електропроводног материјала (често се користи злато, сребро, угљеник, или неки други проводни метал или легура), осим ако инструмент има могућност да ради у нисконапонском режиму.

Слика 14: Шематски приказ основних компоненти SEM-а [108].

Скенирајући електронски микроскоп са присуством поља (енг. *Field Emission Scanning Microscopy*, FESEM) представља скенирајући електронски микроскоп који уместо класичне катоде емисију електрона постиже помоћу јаких поља. За разлику од класичног SEM-а, FESEM производи чистије, мање електростатички изобличене слике са просторном резолуцијом до нанометра, три до шест пута боље од класичног SEM-а.

За проучавање морфолошких особина добијених узорака коришћен је SEM уређај Joel JSM-7600F, који се налази на Институту "Јожеф Стефан", Љубљана, Словенија. За потребе снимања прашкасти узорци су депоновани на графитни држач узорака и премазани слојем платине дебљине 5 nm уз помоћ PECS Gatan 682. Хемијски састав испитиваних узорака испитиван је на скенирајућем електронском микроскопу са присуством поља (FESEM) модел FEI Scios 2 (Лабораторија за атомску физику, Институт за нуклеарне науке "Винча") који поседује енергетски дисперзиони спектрометар (EDX).

3.5 SQUID магнетометрија

Направљен шездесетих година двадесетог века, суперпроводни квантни интерферометар (енг. Superconducting quantum interference device, SQUID) постаје кључни фактор у развоју и комерцијализацији ултраосетљивих електричних и магнетних мерних система [109]. Иако по основној конструкцији SQUID магнетометри представљају уређаје за мерење магнетног флукса, они могу да мере и све величине чије се мерење заснива на мерењу магнетног флукса попут магнетног поља, струје, градијента магнетног поља, магнетизације, магнетне сусцептибилности [110]. Често ови инструменти пружају могућност мерења тамо где ни једна друга метода није могућа.

Рад ових суперпроводних уређаја заснива се на комбинацији два физичка феномена: квантизација флукса и Џозефсонов ефекат. SQUID уређаји користе феномен Џозефсоновог ефекта за мерење екстремно малих варијација у магнетном флуксу. Уобичајено, SQUID представља прстен од суперпроводног материјала прекинут са једним или више Џозефсонових спојева. Због квантованог стања суперпроводног прстена и изванредног нелинеарног понашања Џозефсоновог споја, SQUID може да препозна промене у спољашњем магнетном пољу блиске вредности од 10⁻¹⁵ T, док може да ради и у пољима великим до око 7 T. Можемо разликовати два основна типа SQUID-а: RF – SQUID (радиофреквентни) који се састоји од суперпровдне контуре и једног Џозефсоновог споја и DC –

Слика 15: а) RF – SQUID б) DC – SQUID Ф- спољашњи флукс који пролази кроз суперпроводну контуру, I_a , I_b , I_J - Струје Џозефсонових спојева. [111].

SQUID који у односу на радиофреквентни поседује два паралелна Џозефсонова споја (Слика 15). Помоћу DC – SQUID-а може се мерити магнетизација материјала тако што се оба Џозефсонова споја поставе у исто стационарно поље, док се узорак поставља у близини једног споја, тако да магнетизација узорка утиче на флукс поља у околини тог споја. Синусоидни сигнал напона који се добија при мерењу пропорционалан је магнетизацији узорка. Са друге стране, рад RF – SQUID-а базиран је на динамичким карактеристикама Џозефсоновог споја. Мање је осетљив у односу на DC – SQUID, међутим јефтинији је и лакши за производњу и стога се чешће користи. Екстремно мали сигнали и фундаментална мерења у биомагнетизму мерена су у RF – SQUID интерферометру.

3.5.1 MPMS систем

Комерцијални Quantum Design's Magnetic Property Measurement System (MPMS) представља високо интегрисан инструментални систем, направљен тако да представља основни алат у сложеним истраживањима магнетизма у материјалу. Користи се у истраживачким лабораторијама широм света за карактеризацију материјала која захтева високу осетљивост детекције у широком опсегу температуре и великим примењеним пољима која могу бити и до седам тесле. Помоћу оваквог система детектује се магнетни момент узорка материјала на основу којег се може одредити магнетизација и магнетна сусцептибилност узорка. Један MPMS систем укључује више различитих суперпроводних компоненти:

- Суперпроводни магнет за генерисање јаких магнетних поља;
- Суперпроводни детекциони калем који се индуктивно спаја са узорком;

- SQUID повезан са детекционим калемом;
- Суперпроводни магнетни оклоп који окружује SQUID.

Позиција различитих компоненти приказана је на Слици 16.

SQUID представља срце једног MPMS система, међутим он не детектује директно магнетно поље од узорка. Уместо тога, узорак се креће кроз систем суперпроводног детекционог калема који је повезан са SQUID-ом суперпроводним жицама. Електроника SQUID-а производи излазни напон директно пропорционалан струји која тече кроз SQUID-ов улазни калем. Дакле, SQUID уређај смештен око 11 ст испод магнета унутар суперпроводног оклопа, уствари функционише као екстремно осетљив конвертор струје у напон.

Слика 16: а) Конфигурација и б) локација суперпроводног детекционог калема [104].

Мерење код ових уређаја се врши тако што се узорак ставља у пластичну цев и помера кроз детекциони калем. Како се узорак помера кроз калем, магнетни момент узорка индукује електричну струју у детекционом калему. Будући да детекциони калем, конекционе жице и улазни калем SQUID-а формирају затворену суперпроводну петљу, било која промена у магнетном флуксу унутар детекционог калема ствара промену струје у детекционом колу која је пропорционална промени магнетног флукса. SQUID функционише као високо линеарни конвертор струје у напон, тако да промене у струји детекционог калема дају одговарајућу промену у излазном напону SQUID-а који је пропорционалан магнетном моменту узорка. У потпуно калибрисаном систему, мерење промене напона са SQUID детектора док се узорак помера кроз детекциони калем, омогућава велику тачност у мерењу магнетног момента узорка. Систем се калибрише помоћу малог комада материјала познате масе и магнетне сусцептибилности. Конфигурација и локација суперпроводног детекционог калема дати су на Слици 16.

Слика 17: Quantum Design XL-5 SQUID магнетометар.

Магнетна мерења у овој докторској дисертацији извршена су помоћу Quantum Design MPMS (Magnetic Property Measurement System) XL-5 SQUID магнетометра, који се налази у Лабораторији за теоријску физику и физику кондензоване материје у Институту за нуклеарне науке "Винча" (Слика 17). Овај систем се користи за мерење малих промена магнетног флукса и врло је осетљив у свим АС и DC магнетним мерењима. Радни опсег MPMS је од 1,9 K до 400 K, а суперпроводни магнет може постићи поља од -50 до 50 kÖe. Углавном се користи за мерење статичких и динамичких магнетних својстава наночестичних материјала, попут оксида 3d метала и ретких земаља. Овај магнетометар се примењује за карактеризацију различитих врста материјала и за различите области науке.

Мерења магнетне сусцептибилности узорака приказаних у овом раду извршена су у интервалу температура од 2 до 300 К за примењено магнетно поље од 100 Öe. Зависност изотермалне магнетизације у функцији поља мерена је на неколико различитих температура (2, 5, 10, 20, 50, 100, 150, 200 и 300 К) за вредности поља од -50 до 50 kÖe.

3.6 Фотолуминесцентна спектроскопија

Фотолуминесцентна спектроскопија представља једну од метода оптичке карактеризације материјала. Овом методом могу се снимати емисиони и ексцитациони спектри посматраних материјала, као и време живота одређених електронских прелаза. Основне компоненте уређаја који се користе у спектрометрији су: извор зрачења, монохроматори, ћелије са узорком и детектори. Као извор зрачења могу се користити лампе или ласери. Комерцијални уређаји обично садрже лампе (најчешће коришћен извор је ксенонска лампа која емитује зрачење у опсегу 250 до 700 nm), мада се користе и ласери различитих таласних дужина у зависности од таласне дужине потребне за побуду испитиваних узорака. Монохроматори омогућавају селективно пропуштање светлости и неопходни су уколико се као побуда користи лампа. Детектор има улогу превођења светлости у електрични сигнал.

Фотолуминесцентна мерења снимљена за потребе ове дисертације извршена су на спектрофлуорометарском систему Fluorolog-3 Model FL3 – 221 (HORIBA Jobin-Yvon) који се налази у Лабораторији за радијациону хемију и физику у Институту за нуклеарне науке "Винча". Основна шема овог уређаја приказана је на Слици 18. У састав овог инструмента улазе два емисиона и један ексцитациони спектрометар. Емисиони спектрометри служе за праћење емитованог зрачења и користе се за различите области спектра. Један спектрометар има двоструки монохроматор и служи за праћење зрачења из видљиве и ултраљубичасте области спектра (200 – 850 nm), док други има један монохроматор и користи се за блиску инфрацрвену област спектра (800 – 1600 nm). Као извор зрачења основног уређаја користи се ксенонска лампа. Уређај Fluorolog-3 Model FL3-221 има две ксенонске лампе. Као побуда за ексцитацију испитиваних узорака у дисертацији је уместо ксненонске лампе коришћен чврсти ласер, модел MDLH 980 3W, са ексцитационом снагом подешеном на 150 mW. Зрачење се из извора усмерава системом сочива ка ексцитационом филтеру где се издваја зрачење врло уског опсега таласне дужине којим се побуђује узорак. Из извора се зрачење усмерава на ексцитациони спектрометар ради добијања квалитетнијег зрачења за ексцитацију. Зрачење из ексцитационог спектрометра се усмерава на узорак. Емисиони спектрометри се налазе под углом од 90° у односу на ексцитациони спектрометар ради смањења сметњи које потичу од пропуштеног и расејаног побуђивачког зрачења.

Слика 18: Fluorolog-3 Model FL3-221 (HORIBA Jobin-Yvon) [112].

За потребе снимања узорци у облику праха се таблетирају хладним пресовањем без додатака. За фотолуминесцетна мерења прашкасти узорци испитивани у овој дисертацији су пресовани под оптерећењем од 2000 kg/cm² ради добијања таблета. Код овог уређаја се за детекцију светлости из UV и VIS области спектра користе фотомултипликатори типа R928 и TBX, док се за IC област користи фотодетектор (InGaAs) који се хлади на температури течног азота.

Уређај Fluorolog-3 Model FL3-221 поседује посебно предвиђено место за оптичко влакно помоћу кога се могу мерити емисиони спектри на повишеним температурама. Улога оптичког влакна је да усмерава сноп светлости на површину узорка чија се карактеризација врши и да потом врати сигнал ка детектору. Такође, постоји посебан уређај који помоћу контролера температуре регулише температуру узорка који се испитује (уређај се састоји од грејне плоче/постоља, контролне јединице и отпорног референтног термометра). Овај додатак служи за постизање одговарајуће температуре постоља на којем се налази узорак и за њено одржавање током снимања. Све се конектује оптичким влакнима. Шема експерименталне поставке која је коришћена за термометријска мерења приказана је на Слици 19.

Слика 19: Шема експерименталне поставке коришћене за термометријска мерења [113].

Глава 4

Резултати и дискусија

4.1 Чврсти раствори итријум-трифлуорида допирани јонима итербијума, Yb_xY_{1-x}F₃

У овом поглављу докторске дисертације приказан је поступак синтезе чврстих раствора $Yb_xY_{1-x}F_3$ (x = 0,01; 0,03; 0,05; 0,1; 0,25; 0,5; 0,7; 0,9 и 1). У наставку су дати резултати истраживања структурних, морфолошких, као и магнетних својстава припремљених узорака објављени у референцама [114–116].

4.1.1 Синтеза узорака

Узорци итријум(III)-флуорида допирани тровалентним јонима итербијума (Yb^{3+}) добијени су флуоридизацијом одговарајућих оксида амонијум хидрогендифлуоридом. Као полазни материјали за синтезу чврстих раствора $Yb_xY_{1-x}F_3$ коришћени су комерцијални оксиди Y_2O_3 и Yb_2O_3 заједно са NH_4HF_2 . Све почетне хемикалије су велике чистоће $\geq 98, 5 - 99, 9\%$, купљене од фирме *Sigma-Aldrich*. Количина реактаната потребних за синтезу чврстих раствора израчуната је на основу стехиометријског прорачуна који следи из следеће једначине:

$$(1-x)Y_2O_3 + xYb_2O_3 + 6NH_4HF_2 \rightarrow 2Yb_xY_{1-x}F_3 + 6NH_4F + 3H_2O.$$
 (4.1)

Чврсти раствори $Yb_xY_{1-x}F_3$ добијени су у двостепеној синтези. Реакција започиње мешањем полазних супстанци у ахатном авану све док се не добије потпуно хомогенизована смеша. Након хомогенизације, суви прах се прво загрева у ваздуху на 170 °C у трајању од 20 h. Затим се, у другом кораку синтезе, добијени узорци загревају у трајању од 3h на температури од 500 °C у благо редукционој атмосфери (Ar – 10% H₂). На крају се од праха прави таблета. У току флуоридизације може доћи до стварања различитих интермедијарних једињења.

4.1.2 Структурна и микроструктурна анализа

Рендгенска дифракциона анализа

На Слици 20 приказани су рендгенски дифрактограми прашкастих узорака добијених након прве фазе синтезе, загревањем хомогенизованог праха (Y_2O_3 , Yb_2O_3 и NH_4HF_2) у ваздуху на 170 °C. Све рефлексије на добијеним дифрактограмима показују потпуно формирање фазе (NH_4)(Yb_xY_{1-x})₂F₉ (PCPDF : 43 – 0840).

Слика 20: Рендгенски дифрактограми узорака $(NH_4)(Yb_xY_{1-x})_2F_9$ (x = 0,01; 0,03; 0,05; 0,1) насталих након прве фазе синтезе.

Рендгенски дифрактограми праха финалних узорака Yb_xY_{1-x}F₃ приказани су на Слици 21. Утврђено је да ови дифрактограми укључују само рефлексије карактеристичне за орторомбични тип кристалне структуре.

Ритвелдова анализа

Ритвелдова анализа направљених узорака урађена је у програму FullProf. Утачњавање параметара кристалне структуре свих финалних чврстих раствора Yb_xY_{1-x}F₃ рађено је у просторној групи Pnma. За почетне вредности параметара јединичне ћелије и атомских фракционих координата узете су вредности из литературе [47]. На самом почетку утачњавања унети су подаци из литературе:

Слика 21: Рендгенски дифрактограми за узорке $Yb_xY_{1-x}F_3$ (x = 0; 0,01; 0,03; 0,05; 0,10; 0,25; 0,50; 0,70; 0,90; 1).

параметри јединичне ћелије, координате атома и окупациони фактори, а задате су и почетне вредности осталих параметара који се утачњавају (фактор скале, нула бројача, изотропни параметри померања атома, коефицијенти полинома базне линије, параметри профилне функције, параметри асиметрије пика). Свако утачњавање започиње припремом одговарајућег PCR, IRF и DAT фајла. DAT фајл представља двоколонски фајл у коме су на одговарајући начин припремљени подаци добијени са дифрактометра (у првој колони су дати 20 углови, а у другој одговарајући интензитети). У IRF фајлу је записана резолуциона функција за инструментално ширење дифракционих пикова, док PCR фајл представља улазни контролни фајл у који се уносе почетне вредности параметара који се утачњавају. PCR фајл се приликом утачњавања мења. Након припреме одговарајућег PCR фајла може се кренути са утачњавањем.

Слика 22: Експериментални (црне тачке) и израчунати (црвена линија) интензитети дифрактограма узорка Yb_{0,5}Y_{0,5}F₃. Плава линија представља разлику између експерименталног и израчунатог дифрактограма. Вертикалним цртицама означени су дозвољени Брагови пикови. Убачена слика у горњем десном углу представља илустрацију анизотропног микронапрезања.

Код решавања структуре синтетисаних узорака за описивање профила рефлексија коришћена је Томпсон-Кокс-Хастингсова (ТСН) псеудо-Војтова функција, док је базна линија, која описује шум/позадину, одређена полиномом шестог степена. Процес утачњавања започет је варирањем фактора скале, након што је подешено да се ATZ (коефицијент за израчунавање тежинског процента фазе) рачуна аутоматски. У следећем кораку је укључено да се утачњавају поред фактора скале и нуле бројача, први параметар базне линије и параметри решетке. У наредним корацима су редом варирани остали параметри базне линије. Затим је, поред свих ових параметара укључен у варирање и први коефицијент (од укупно шест) уз функције нормализованих сферних хармоника (Y00). Укључивањем само овог параметра, претпоставља се да се ради о сферном облику кристалита, тј. претпоставља се изотропан раст кристалита. Када систем постигне конвергенцију треба обратити пажњу на то како су измоделоване поједине рефлексије. Утачњавање се може најлакше пратити преко PRF фајла у програму WinPLOTR који се налази у склопу FullProf пакета. Генерално, након сваких n циклуса утачњавања, било да систем конвергира или не, увек се може визуелно пратити како напредује фит, исто као и то да ли се смањују фактори доброте фита: R_{wp} , Chi^2 , R_{Bragg} .

У току анализе примећено је да су неки пикови шири од израчунатих профила, што указује на то да се ради о анизотропном расту кристалита и/или постојању анизотропног микронапрезања у кристалитима. Након ове анализе, у варирање су укључени параметри асиметрије. У наредном кораку је укључено утачњавање и наредна два коефицијента нормализованих сферних хармоника (Y20 и Y22+). Може се пробати са утачњавањем и преостала три коефицијента (Y40, Y42+ и Y44+), међутим облик кристалита који се добија није реалан, па је утачњавање ограничено само на прва три коефицијента нормализованих сферних хармоника. Даље су варирани параметри за микронапрезање (S_400, S_040, S_004, S_220, S_202, S_022). Укључен је модел квадратичне форме у реципрочном простору за Лауелову ттт класу, услед анизотропног микронапрезања. Примећено је знатно побољшање фита након овог укључивања. На крају је, поред свих претходно укључених параметара, додато утачњавање атомских фракционих координата, као и изотропних параметара померања атома. Ритвелдови дијаграми анализираних прахова показали су добро слагање измерених и израчунатих дифрактограма. Дијаграм утачњавања структуре за једињење Yb_{0.5}Y_{0.5}F₃ приказан је на Слици 22.

Најбитнији резултати Ритвелдовог утачњавања попут кристалографских података, атомских и микроструктурних параметара, приказани су у Табелама 5 и 6. На основу података датих у табелама може се приметити да са порастом концентрације х итербијумовог јона Yb³⁺, долази до благог смањења *а* и *b* параметара јединичне ћелије и благог пораста параметра *c*. Такође, са повећањем концентрације Yb³⁺ јона долази до смањења запремине јединичне ћелије узорака, што представља очекивани резултат услед разлике у радијусу Yb³⁺ (0,98 Å) и Y³⁺ (1,015 Å) јона [52].

x :	0	0,01	0,03	0,05	0, 1
a[Å]	6.35789(8)	6.35588(8)	6.35385(8)	6.35031(8)	6.34243(9)
$b[m \AA]$	6.86070(9)	6.85937(9)	6.85765(9)	6.85684(9)	6.85236(10)
$c[m \AA]$	4.40642(6)	4.40623(6)	4.40528(6)	4.40764(6)	4.40841(6)
Запремина јединичне					
ћелије, $V[{ m \AA}^3]$	192.206(4)	192.100(4)	191.949(4)	191.922(4)	191.592(5)
Број формула по јединичној					
ћелији, Z	4	4	4	4	4
Профилни <i>R</i> -фактор:					
R_{wp}	8.68%	8.64%	8.49%	8.46%	8.43%
R_{exp}	7.02%	7.16%	7.29%	7.34%	7.48%
Брагов R -фактор, R_B	2.33%	2.35%	2.26%	2.14%	2.11%
Chi^2	1.53	1.46	1.36	1.33	1.27
x:	0.25	0.5	0.7	0.9	1
$a[\text{\AA}]$	6.31819(9)	6.27514(9)	6.24404(8)	6.21204(8)	6.19720(8)
$b[m \AA]$	6.84159(11)	6.82266(11)	6.80698(11)	6.79399(11)	6.78624(10)
$c[m \AA]$	4.41657(7)	4.43118(7)	4.43973(7)	4.45482(7)	4.45921(7)
Запремина јединичне					
ћелије, $V[{ m \AA}^3]$	190.913(5)	189.712(5)	188.702(5)	188.013(5)	187.535(5)
Број формула по јединичној					
ћелији, Z	4	4	4	4	4
Профилни <i>R</i> -фактор:					
R_{wp}	8.54%	7.68%	7.75%	7.64%	7.95%
R_{exp}	7.59%	7.51%	7.27%	7.07%	6.97%
Брагов R -фактор, R_B	2.21%	2.25%	2.36%	2.40%	2.35%
Chi^2	1.26	1.05	1.14	1.17	1.30
Стандардне девијације су дал	ге у заградам	1a.			

Табела 5: Кристалографски подаци за узорке $Yb_xY_{1-x}F_3$ (x = 0; 0,01; 0,03; 0,05; 0,10; 0,25; 0,50; 0,70; 0,90; 1).

Микронапрезање присутно у узорцима је врло анизотропно са значајно већим вредностима микронапрезања дуж различитих праваца који леже у a - c равни од микронапрезања дуж b-осе. Разлог оваквог анизотропног микронапрезања потиче од чињенице да су катјони смештени у раванским слојевима нормалним на b-осу и да овде постоји само један положај јона флуора (у 8d општем положају) који се може померати дуж b-осе [117]. Из тог разлога ће се свако напрезање ублажити првенствено померањима у *a* – *c* равни. Илустрација анизотропног микронапрезања приказана је плавом фигуром уметнутом у Слици 22.

Табела 6: Утачњене вредности атомских и микроструктурних параметара за узорке $Yb_xY_{1-x}F_3$ (x = 0; 0,01; 0,03; 0,05; 0,10; 0,25; 0,50; 0,70; 0,90; 1).

x :		0	0,01	0,03	0,05	0, 1
Y, Yb (4c)	x	0.36774(4)	0.36771(4)	0.36782(3)	0.36776(3)	0.36762(4)
	z:	0.05883(5)	0.05875(5)	0.05878(5)	0.05855(5)	0.05835(5)
	$B_{iso}[{ m \AA}]$	1.871(7)	1.914(7)	1.910(7)	1.876(7)	1.959(7)
F(4c)	x	0.5231(2)	0.5232(2)	0.5227(2)	0.5230(2)	0.5231(2)
	z	0.5918(3)	0.5920(3)	0.5918(3)	0.5921(9)	0.5933(3)
	$B_{iso}[{ m \AA}]$	1.88(3)	1.93(3)	1.92(3)	1.89(3)	1.99(3)
F(8d)	x	0.1648(2)	0.1648(2)	0.1643(2)	0.1642(2)	0.1641(2)
	y	0.06283(11)	0.06261(10)	0.06229(10)	0.06252(10)	0.06249(11)
	z	0.3737(2)	0.3739(2)	0.3737(2)	0.3736(2)	0.3732(2)
	$B_{iso}[{ m \AA}]$	2.04(2)	2.09(2)	2.08(2)	2.11(2)	2.12(2)
Усредњена	а величина					
кристалита	a [nm]	48	50	48	47	47
Усредњено	о максимално					
микронапр	езање [%]	0.16	0.16	0.16	0.17	0.17
x :		0.25	0.5	0.7	0.9	1
Y, Yb (4c)	x	0.36763(4)	0.36725(3)	0.36710(4)	0.36686(4)	0.36683(1)
	z	0.05727(5)	0.05554(4)	0.05430(5)	0.05303(5)	0.05240(2)
	$B_{iso}[\text{\AA}]$	1.926(8)	1.953(7)	1.938(7)	1.926(7)	1.889(2)
F(4c)	x	0.5236(2)	0.5239(2)	0.5244(2)	0.5246(3)	0.52574(11)
	z	0.5946(4)	0.5994(4)	0.6029(4)	0.6076(4)	0.6060(2)
	$B_{iso}[{ m \AA}]$	1.98(4)	2.02(4)	2.02(5)	2.02(5)	2.05(2)
F(8d)	x	0.1642(2)	0.1638(2)	0.1643(2)	0.1636(3)	0.16435(11)
	y	0.06246(12)	0.06231(12)	0.06233(14)	0.06271(2)	0.06258(6)
	z	0.3720(2)	0.3698(2)	0.3674(2)	0.3663(3)	0.36507(12)
	$B_{iso}[{ m \AA}]$	2.14(3)	2.05(3)	1.86(3)	1.82(4)	1.82(2)
Усредњена	а величина					
кристалита	a [nm]	50	52	54	51	56
Усредњено	о максимално					
микронапр	езање [%]	0.23	0.29	0.27	0.25	0.24
Стандардн	е девијације о	су дате у загј	радама.			

Скенирајућа електронска микроскопија (SEM)

Морфологија и величина кристалита интермедијарних једињења облика (NH₄) $(Yb_xY_{1-x})_2F_9$ анализирани су помоћу скенирајуће електронске микроскопије. На Слици 23 дат је приказ SEM микрографије узорка $(NH_4)(Yb_{0,02}Y_{1,98})_2F_9$. Са слике се може приметити да се дати прашкасти узорак састоји од неправилно обликованих честица средњег пречника око 160 nm, које су чврсто груписане образујући веће структуре.

Слика 23: SEM микрографија узорка $(\rm NH_4)_3Yb_{0,02}Y_{1,98}F_9$ са увећањем
а) 40000× и б) 9000×.

Скенирајућом електронском микроскопијом испитивана је и морфологија финалних синтетисаних узорака. СЕМ микрографије неких од узорака приказане су на Слици 24. Може се приметити да постоји видљива разлика у морфологији коначних узорака и узорака добијених у међуфази, приказаних на Слици 23. Чврсто груписане честице нерегуларног облика могу се исто приметити на SEM микрографијама коначних продуката, међутим овде оне формирају структуре мање или више регуларног облика величине око $1 - 3 \mu$ m. Сви узорци синтетисани на 500 °C састоје се од честица упоредивих морфологија и величине око 60 - 180 nm.

Слика 24: SEM микрографије узорка $Yb_xY_{1-x}F_3$: a) x = 0,01; б) x = 0,5 и ц) x = 1.

Спектри добијени квалитативном енергијски дисперзионом спектрометријском (EDX) анализом искоришћени су за потврду састава и чистоће синтетисаних узорака $Yb_xY_{1-x}F_3$. Резултати EDX анализе приказани су у Табели 7. На основу добијених података израчунат је састав синтетисаних узорака и добијени резултати су у добром слагању са иницијално циљаним саставом у границама стандардне девијације. На Слици 25 је приказан EDX спектар $Yb_{0,01}Y_{0,99}F_3$ чврстог раствора.

Узорак	Yb [at%]	Y[at%]	F[at%]	EDX састав
YF ₃	_	$25,\!2(3)$	74,8(9)	$YF_{2,96(5)}$
$Yb_{0,01}Y_{0,99}F_3$	$0,\!3(1)$	$24,\!5(3)$	75,2(9)	$Yb_{0,012(4)}Y_{0,988(4)}F_{3,03(5)}$
$Yb_{0,03}Y_{0,97}F_3$	0,8(1)	24,4(3)	74,8(9)	$Yb_{0,032(4)}Y_{0,968(4)}F_{2,97(6)}$
$Yb_{0,05}Y_{0,95}F_3$	1,4(2)	$23,\!6(3)$	75,0(9)	$Yb_{0,056(8)}Y_{0,944(8)}F_{3,00(6)}$
$Yb_{0,10}Y_{0,90}F_3$	2,8(2)	21,7(3)	75,5(9)	$Yb_{0,114(7)}Y_{0,886(7)}F_{3,08(6)}$
$Yb_{0,25}Y_{0,75}F3$	6,5(2)	18,8(3)	74,7(9)	$Yb_{0,257(7)}Y_{0,743(7)}F_{2,95(6)}$
$Yb_{0,50}Y_{0,50}F_3$	12,9(3)	$12,\!5(3)$	74,6(9)	$Yb_{0,508(8)}Y_{0,492(8)}F_{2,94(6)}$
$Yb_{0,70}Y_{0,30}F_3$	17,4(3)	7,9(2)	74,7(9)	$Yb_{0,688(7)}Y_{0,312(7)}F_{2,95(6)}$
$Yb_{0,90}Y_{0,10}F_3$	22,8(3)	2,7(2)	74,5(9)	$Yb_{0,894(7)}Y_{0,106(7)}F_{2,92(5)}$
YbF ₃	$25,\!3(3)$	_	74,7(9)	$\mathrm{YbF}_{2,95(5)}$

Табела 7: Елементарна анализа узорка Yb_xY_{1-x}F₃.

Стандардне девијације су дате у заградама.

Слика 25: EDX спектар Yb_{0,01}Y_{0,99}F₃ чврстог раствора.

4.1.3 Магнетна својства

У оквиру докторске дисертације испитивана су магнетна својства чврстих раствора Yb_xY_{1-x}F₃. На магнетно понашање ових једињења у великој мери утичу специфична својства присутног јона Yb³⁺. Итербијумов јон има електронску конфигурацију $4f^{13}$ са једним вакантним местом у 4f електронској љусци што га чини последњим јоном у низу јона ретких земаља са непопуњеном 4f орбиталом. Итербијумов јон спада у Крамерове јоне са основним ²F_{7/2} и првим побуђеним мултиплетом ²F_{5/2}. Енергетски процеп између основног и првог побуђеног мултиплета овог јона је око $10000 \,\mathrm{cm}^{-1}$, што је уједно и највеће енергетско раздвајање међу ретким земљама (Табела 1). Услед велике енергетске разлике, први побуђени мултиплет нема значајан утицај на магнетна својства једињења са итербијумом, па је у овом случају довољно разматрати само понашање основног мултиплета. Под утицајем кристалног поља чија је симетрија мања од кубне, осмоструко дегенерисани основни мултиплет ²F_{7/2} се цепа на четири Крамерова дублета. Ово цепање има значајан утицај на магнетно понашање узорка и мора се узети у разматрање приликом анализе магнетних својстава у целом температурском интервалу.

Слика 26: График температурске зависности инверзне моларне парамагнетне сусцептибилности за узорке $Yb_xY_{1-x}F_3$ у целом температурском интервалу мерења а) x = 0,01; 0,03; 0,05; 0,10, б) x = 0,25; 0,5; 0,7; 0,9; 1^{*}. *Експериментални подаци и одговарајуће израчунате криве за x = 1 помножене су фактором 0,5 због боље видљивости.

За испитивање магнетних својстава синтетисаних узорака вршена су мерења магнетне сусцептибилности у температурском интервалу 2 – 300 К при примењеном магнетном пољу од 100 Öe. Зависност инверзне парамагнетне сусцептибилности од температуре за чврсте растворе Yb_xY_{1-x}F₃ приказана је на Слици Добијени експериментални подаци за магнетну сусцептибилност кориго-26.вани су одузимањем дијамагнетног доприноса коришћењем вредности за одговарајуће јоне преузете из референце [118]. Са слике се може приметити да у датом температурском интервалу ова зависност није линеарна функција и да постоји одступање од Кири-Вајсовог закона. Овакво понашање представља резултат деловања кристалног поља на основни мултиплет итербијумовог јона. Као што је речено раније, Yb^{3+} јони заузимају 4c Викофову позицију са кристалном симетријом Cs. Кристално поље овакве симетрије доводи до цепања осмоструко дегенерисаног основног мултиплета и сваком од четири Крамерова дублета се може придружити ефективни магнетни кванти број $\pm M_{ieff}$ (i = 0, 1, 2 и 3) који представља линеарну комбинацију магнетних квантних бројева слободног јона. Са променом температуре долази и до промене насељености Крамерових дублета, што резултира временски зависним ефективним магнетним моментом. У оваквом случају, температурску зависност магнетне сусцептибилности у целом температурском интервалу можемо представити следећом једначином:

$$\chi = \frac{\mathbf{x} N_A g_J^2 \mu_0 \mu_B^2}{k_B (T - \theta)} \frac{\sum_{i=1}^3 M_{ieff}^2 \exp(-\frac{E_i}{k_B T})}{\sum_{i=0}^3 \exp(-\frac{E_i}{k_B T})},$$
(4.2)

где је са х означена концентрација Yb³⁺ јона, N_A је Авогадров број, $g_j = 8/7$ је Ландеов фактор, са M_{ieff} су означени ефективни магнетни квантни бројеви појединачних Крамерових дублета, са E_i су означени њима одговарајући енергетски поднивои и са θ је представљена Кири-Вајсова парамагнетна температура.

На ниским температурама, испод 3К може се сматрати да је насељен само енергетски најнижи Крамеров дублет. У овом температурском интервалу зависност инверзне парамагнетне сусцептибилности од температуре је линеарна и задовољава Кири-Вајсов закон (Слика 27). У случају ниских температура, једначина 4.2 се своди на:

$$\chi = \frac{\mathbf{x} N_A g_J^2 \mu_0 \mu_B^2 M_{0\,eff}^2}{k_B (T - \theta)}.$$
(4.3)

Фитовањем експерименталних података у нискотемпературском интервалу помоћу претходне једначине добијене су вредности за параметре M_{0eff} и θ (Табела 8). Треба нагласити да је добијена Кири-Вајсова температура θ одређена само доприносом слабих изменских интеракција између јона итербијума, а не и кристалним пољем које би морало да фигурише у вредности θ да је она одређена из високотемпературских мерења, што се и најчешће среће у литератури. За све посматране узорке параметар θ има негативне вредности што указује на доминантност антиферомагнетних изменских интеракција. На Слици 28 је приказана зависност Кири-Вајсове температуре са променом концентрације магнетног јона х. Како је добијена зависност линеарна може се закључити да магнетни јони Yb³⁺ не теже ка формирању кластера [119].

Слика 27: График зависности нискотемпературске инверзне парамагнетне сусцептибилности за узорке $Yb_xY_{1-x}F_3$ а) $x = 0,01; 0,03; 0,05; 0,01, 6) x = 0,25; 0,5; 0,7; 0,9; 1^*$. Тачкама су представљене експерименталне вредности, а пуном линијом фит Кири-Вајсовог закона. *Експерментални подаци и одговарајуће израчунате праве за x = 1помножене су фактором 0,5 због боље видљивости.

Преостали ефективни магнетни квантни бројеви M_{ieff} (i = 1, 2, 3) добијени су фитовањем експерименталних података за инверзну магнетну сусцептибилност помоћу једначине 4.2 у целом температурском интервалу, где су за вредности M_{0eff} и θ искоришћени подаци добијени из нискотемпературског фита (Табела 8). Може се уочити добро слагање параметара M_{ieff} и E_i добијених за различите вредности концентрације х итербијумовог јона. На крају у Табели 8 приказана је средња вредност ових параметара. У доступној литератури постоји мало експерименталних података за вредности енергије поднивоа Yb³⁺ јона у YF₃ матрици са којима можемо квантитативно упоредити добијене резултате. Једини експериментали подаци о цепању нивоа ²F_{7/2} које смо пронашли добијени су из луминесцентних мерења и добијена вредност износи око 167 K [120]. Из Табеле 8 се може приметити да је највеће цепање основног мултиплета E_3/k_B , добијено за најразређеније растворе (x = 0,01 и x = 0,03), у одличном слагању са резултатима добијених из луминесцентних мерења.

x :	0,01	0,03	$0,\!05$	$0,\!1$	0,25
M_{0eff}	$1,\!506(5)$	1.459(6)	1.446(6)	1.691(10)	1.677(12)
M_{1eff}	1,738(9)	1,719(8)	1,729(8)	$1,\!89(3)$	1,981(8)
M_{2eff}	2,715(6)	$2,\!692(9)$	2,775(6)	$3,\!234(18)$	3,270(10)
M_{3eff}	$2,\!394(14)$	2,479(10)	$2,\!852(7)$	$3,\!111(16)$	2,89(6)
$E_1/k_B\left[K\right]$	14,0(3)	15,9(3)	$16,\!9(3)$	13,0(10)	14,9(3)
$E_2/k_B\left[K\right]$	64,2(3)	65, 3(4)	$69,\!5(2)$	60,4(6)	66,5(4)
$E_3/k_B\left[K ight]$	146(8)	157(3)	245(2)	213(5)	197(2)
$\theta\left[K\right]$	-0,095(20)	-0,085(18)	-0,09(2)	-0,098(24)	-0,129(15)
x :	$0,\!5$	0,7	0,9	1	Средња вредност
M_{0eff}	$1,\!612(5)$	1,574(4)	$1,\!600(5)$	1,505(5)	1,563(6)
M_{1eff}	1,977(8)	2,026(11)	$2,\!111(13)$	1,966(8)	1,904(11)
M_{2eff}	$3,\!294(10)$	3,379(10)	$3,\!572(10)$	3,412(10)	3,149(10)
M_{3eff}	2,822(4)	2,733(4)	$2,\!925(6)$	2,729(4)	2,771(14)
$E_1/k_B\left[K\right]$	16,2(2)	17,7(3)	17,4(2)	16,7(2)	15,9(3)
$E_2/k_B\left[K ight]$	66,8(3)	73,2(3)	70,7(3)	66, 8(3)	67,0(3)
$E_3/k_B\left[K ight]$	188(2)	252(3)	215(3)	197(3)	201(3)
$\theta\left[K\right]$	-0,197(17)	-0,26(2)	-0,30(2)	-0,34(2)	
Стандардне девијације су дате у заградама.					

Табела 8: Ефективни магнетни квантни бројеви Крамерових дублета $M_{i\,eff}$, њима одговарајуће енергије кристалног поља E_i/k_B и Кири-Вајсова парамагнетна температура θ за узорке $Yb_xY_{1-x}F_3$.

Треба напоменути да цепање основног мултиплета јона ретких земаља у кристалном пољу утиче и на топлотни капацитет, C_p . Криве топлотног капацитета флуорида ретких земаља су глатке и показују континуалан раст са температуром у температурском опсегу од 5 до 350 K, на основу чега се може закључити да у том температурском интервалу не долази до фазних прелаза

Слика 28: Кири-Вајсова парамагнетна температура θ добијена из мерења на ниским температурама (T < 3 K) за узорке Yb_xY_{1-x}F₃.

[40]. Нискотемпературски топлотни капацитет оваквих једињења може се представити као збир компоненте решетке C_{lat} и компоненте вишка C_{exs} :

$$C_p = C_{lat} + C_{exs}.\tag{4.4}$$

Вредност компоненте C_{lat} углавном је одређена вибрацијама јона у кристалу. Допринос C_{exs} настаје као последица расподеле валентних електрона на енергетске нивое и укључује цепање основног мултиплета под дејством поља лиганада (Штарков ефекат). Ова компонента је позната као Шоткијев топлотни капацитет или Шоткијева аномалија [121]. Високотемпературски толотни капацитет се може по аналогији са нискотемпературским написати као збир C_{lat} и C_{exs} . Разлика је у пореклу C_{lat} компоненте код које се, за разлику од нискотемпературског случаја где топлотни капацитет углавном произилази из хармонијских вибрација, на високим температурама мора узети у обзир ефекат анхармоничности вибрација, термичке дилатације решетке и температурно изазваних ваканција у решетки:

$$C_{lat} = C_{har} + C_{anh} + C_{dil} + C_{vac}.$$

$$(4.5)$$

Крива зависности топлотног капацитета од температуре је глатка и континуална у целом температурском интервалу, са прекидима у тачкама где долази до фазног прелаза (температура прелаза из $\beta - YF_3$ у $\alpha - YF_3$ структуру и тачка топљења) у којима су опажени скокови у вредности топлотног капацитета [43, 48, 122].

Зависнност изотермалне магнетизације M(H) од примењеног поља мерена је у интервалу од -50 до 50 kÖe на различитим температурама (2, 5, 10, 20, 50, 100, 150, 200, и 300 K). На Слици 29 приказана је магнетизација узорака у функцији магнетног поља M(H) на 2 К. Примећујемо да код свих испитиваних узорака криве M(H) не показују хистерезис и уочавамо одсуство сатурационе магнетизације у магнетним пољима до 50 kÖe, што је очекивано за парамагнетне системе. Магнетизација класичног парамагнетика може се представити Ланжевеновом функцијом следећом једначином:

$$M = M_s L(y) = M_s [\coth y - \frac{1}{y}],$$
(4.6)

где је са M_s означена сатурациона магнетизација, $y = \mu B/k_B T$, μ представља магнетни момент јона, а B магнетну индукцију. Ланжевенова функција је успешно фитована на све експериментално добијене криве M(H), што указује на парамагнетно понашање синтетисаних чврстих раствора Yb_xY_{1-x}F₃.

Слика 29: Изотермална магнетизација у функцији магнетног поља на температури од 2К за узорке $Yb_xY_{1-x}F_3$: (a) x = 0, 1; 0, 05; 0, 03; и 0,01, (б) x = 1; 0, 9; 0, 7; 0, 5 и 0,25. Пуним линијама су представљене израчунате криве.

За чврсте растворе $Yb_{0,7}Y_{0,3}F_3$ и $Yb_{0,9}Y_{0,1}F_3$ зависност изотермалне магнетизације од магнетног поља мерена је на неколико различитих температура (2, 5, 10, 20, 50, 100, 150, 200 и 300 K) и добијене M(H/T) криве приказане су на Слици 30. Потребно је нагласити да уколико се ефективни магнетни момент не мења са променом температуре, долази до преклапања експерименталних крива M(H/T) добијених на различитим температурама [123]. Овакво понашање је карактеристично уколико је у целом температурском интервалу насељен само енергетски најнижи Крамеров дублет. Код узорака обрађених у овој дисертацији то није случај, тако да овде не долази до преклапања експерименталних крива M(H/T) добијених на различитим температурама (Слика 30). Ово је резултат промене насељености Крамерових дублета основног мултиплета Yb³⁺ јона са променом температуре, што доводи до температурски зависног ефективног магнетног момента μ_{eff} .

Слика 30: Изотермална магнетизација M(H/T) на различитим температурама за узорке а) $Yb_{0,7}Y_{0,3}F_3$ и б) $Yb_{0,9}Y_{0,1}F_3$.

4.2 Иврсти раствори YF₃:Yb/Ln (Ln=Er, Tm, Ho)

У овом делу истраживања синтетисани су чврсти раствори итријум-трифлуорида допирани јонским паровима Yb³⁺/Ln³⁺ (Ln: Er, Tm, Ho). Задатак овог дела дисертације је детаљна карактеризација структурних, оптичких и магнетних својстава синтетисаних једињења. Резултати истраживања приказани су у радовима [124, 125].

4.2.1 Синтеза узорака

Чврсти раствори YF₃:Yb/Ln (Ln = Er, Tm, Ho) синтетисани су на исти начин као и прва група узорака (Yb_xY_{1-x}F₃), мешањем одговарајућих оксида са амонијум хидроген-дифлуоридом. Све хемикалије коришћене у реакцији су чистоће $\geq 98, 5 - 99, 99\%$, купљене од фирме *Sigma-Aldrich*. Крајњи узорци су такође добијени у два корака, прво сушењем претходно хомогенизоване смеше на 170 °C у трајању од 20 h у ваздуху, затим жарењем на 500 °C 3 h у благо редукционој атмосфери (Ar – 10%H₂). Синтеза прахова Y_{0,78}Yb_{0,2}Ln_{0,02}F₃ (ca Ln = Er, Tm, Ho) приказана је следећом реакцијом:

$$0,78Y_{2}O_{3} + 0,2Yb_{2}O_{3} + 0,02Ln_{2}O_{3} + 6NH_{4}HF_{2} \rightarrow 2Y_{0,78}Yb_{0,2}Ln_{0,02}F_{3} + 6NH_{4}F + 3H_{2}O.$$
(4.7)

4.2.2 Структурна и микроструктурна анализа

Резултати рендгенске дифракционе анализе употребљени су за испитивање кристалне структуре и проверу чистоће фаза синтетисаних прахова. Добијени дифрактограми (Слика 31) показују да су сви узорци једнофазни и да су искристалисали у орторомбичној *Pnma* просторној групи (бр. 62) типа $\beta - YF_3$. Стога, може се закључити да долази до потпуне уградње јона лантаноида (Yb³⁺, Er³⁺, Tm³⁺, Ho³⁺) у матрицу YF₃ на место итербијумових јона. У оваквом структурном типу катјони заузимају 4*c* ($x, \frac{1}{4}, z$) кристалографско место, док се јони флуора распоређују у два различита кристалографска места, 4*c* ($x, \frac{1}{4}, z$) и 8*d* (x, y, z).

Ритвелдова анализа

Ритвелдово утачњавање добијених узорака рађено је у просторној групи Pnma при чему су за почетне вредности параметара јединичне ћелије и атомских фракционих координата узете вредности из литературе [47]. Ритвелдова анализа прахова $Y_{0,78}Yb_{0,2}Ln_{,02}F_3$ (са Ln = Er, Tm, Ho) рађена је на сличан начин као и код узорака $Yb_xY_{1-x}F_3$. За описивање профила дифракционих линија употребљена је Томпсон-Кокс-Хастингсова (TCH) псеудо-Војтова функција, док је базна линија одређена полиномом шестог степена. У процесу утачњавања, најпре су варирани фактор скале и нула бројача, затим први параметар базне линије и параметри решетке. Даље су редом варирани остали параметри базне линије. Слично као и код узорака $Yb_xY_{1-x}F_3$, услед анизотропног раста кристала и постојања анизотропног микронапрезања укључени су редом у варирање и прва три коефицијента нормализованих сферних хармоника (Y00, Y20 и Y22+), као и параметри за микронапрезање (S_400, S_040, S_004, S_220, S_202 и S_022).

Слика 31: Рендгенски дифрактограми за узорке YF₃:Yb/Ln (Er, Tm, Ho).

Слика 32: На слици су представљени експериментални (црвени кружићи) и израчунати (црна линија) дифрактограми за узорке YF₃:Yb/Ln (Er, Tm, Ho). Плавом линијом је приказана разлика имеђу експерименталног и израчунатог дифрактограма. Вертикалне цртице приказују позиције дозвољених Брагових дифракционих максимума.

На крају су у варирање додате атомске фракционе координате као и изотропни параметри померања атома. Добијени Ритвелдови дијаграми показују добро слагање измерених и израчунатих дифрактограма. На Слици 32 представљени су коначни Ритвелдови графици за чврсте растворе YF₃:Yb/Er, YF₃:Yb/Tm и YF₃:Yb/Ho.

Узории		Yo 7°Ybo 2Ero 02F2	Yo 78Ybo 2Tmo 02F2	Yo 78Ybo 2H00 02F2
a[Å]		$\frac{10,781 \times 0,2210,0213}{632113(10)}$	$\frac{10,78120,22110,0223}{632252}$	$\frac{10,78120,21100,0213}{632273}$
b[Å]		6,84292 (12)	6,84385 (11)	6,84381 (12)
c[Å]		4.41623 (7)	4.41580(7)	4.41622(7)
Запремина јелиничне	ћелије.	-, (.)	-, (.)	-,(-)
$V[Å^3]$		191.24(5)	191.073(5)	191.97(5)
Профилни R-фактори:	:	, , ,	, , ,	, , ,
R _{wp}		8.34%	8.64 %	8.36%
R _{exp}		8.17%	8.23%	8.25%
Брагов <i>R</i> -фактор, <i>R</i> _B		3.062%	3.333%	3.136~%
Chi^2		1,054	$1,\!10$	$1,\!03$
Y, Yb, Er/Tm/Ho (4c)	x	0,36786 (8)	0,36791 (8)	0,36786 (8)
	z	0,05708 (10)	0,05721 (11)	0,05707 (10)
	$B_{iso} \left[\mathring{A}^2 \right]$	$2,\!13\ (2)$	$2,\!12$ (2)	2,16 (2)
F(4c)	x	0,5235 (4)	0,5234 (4)	0,5234 (4)
	z	0,5939 (6)	0,5950 (7)	0,5946~(6)
	$B_{iso} [{\rm \AA}^2]$	1,93~(7)	1,87(7)	1,92 (7)
F (4d)	x	0,1647 (4)	0,1649 (4)	0,1648 (4)
	y	0,0621 (2)	0,0624 (2)	0,0622 (2)
	z	0,3712 (4)	0,3706 (4)	0,3711 (4)
	$B_{iso} [{\rm \AA}^2]$	$2,\!17$ (6)	$2,\!10$ (6)	2.14(5)
Усредњена величина				
кристалита [nm]		50	51	49
Усредњено максималн	ю			
микронапрезање [%]		0,23	0,20	0,22

Табела 9: Најважнији резултати Ритвелдовог утачњавања за узорке $\rm YF_3:Yb/Ln~(Ln=Er,\,Tm,\,Ho).$

Стандардне девијације су дате у заградама.

Најважнији параметри добијени из Ритвелдове анализе: константе решетке, запремина јединичне ћелије, профилни R-фактори, величина кристалита и микронапрезање, приказани су у Табели 9. Може се приметити да су добијене вредности за параметре решетке нешто мање у односу на почетне параметре узете из литературе. Овакав резултат је очекиван услед разлике у радијусу јона итријума и одговарајућих јона лантаноида (Yb³⁺, Er³⁺, Tm³⁺, Ho³⁺) који се уграђују у YF₃ матрицу. Јонски радијуси одговарајућих јона могу се представити у следећем опадајућем низу: $r(Ho^{3+}) > r(Y^{3+}) > r(Er^{3+}) > r(Tm^{3+}) > r(Yb^3)$ (Табела 1).

Слика 33: СЕМ микрографија узорка Y_{0,78}Yb_{0,2}E_{0,02}F₃.

На основу микроструктурне анализе усредњена величина кристалита за све синтетисане узорке износи око 50 nm, са усредњеним максималним микронапрезањем од око 0,2%. На Слици 33 приказана је SEM микрографија Y_{0,78}Yb_{0,2}Er_{0,02}F₃ узорка. Са слике се може приметити да се посматрани узорак састоји од чврсто груписаних честица, нерегуларног облика и просечне величине од око 20–100 nm.

4.2.3 Магнетна својства

На Слици 34 приказана је температурска зависност инверзне магнетне сусцептибилности за испитиване узорке YF₃:Yb³⁺/Ln³⁺ (Ln³⁺ = Tm³⁺, Er³⁺, Ho³⁺). У циљу добијања магнетне сусцептибилности, експериментално добијене вредности магнетизације у температурском интревалу од 2 до 300 К подељене су са јачином магнетног поља од 100 Öe ($\chi = M/H$). Добијене вредности су даље кориговане одузимањем дијамагнетног доприноса коришћењем вредности датих у референци [118]. Са Слике 34 се може приметити да температурска зависност инверзне сусцептибилности није у складу са Кири-Вајсовим законом у целом температурском интервалу мерења. Овакво понашање је последица дејства кристалног поља на јоне лантаноида. Услед дејства кристалног поља долази до додатног цепања дегенерисаних нивоа јона лантаноида уграђених у YF₃ матрицу. Ово цепање је, као што је већ речено, неупоредиво мање (неколико стотина сm⁻¹) у односу на енергетску разлику између различитих мултиплета.

Слика 34: Инверзна сусцептибилност за узорке YF₃:Yb/Er, YF₃:Yb/Tm и YF₃:Yb/Ho (празни симболи) фитована Кири-Вајсовим законом у температурском интервалу 100 – 300 К (пуна линија).

Број Штаркових нивоа датог мултиплета зависи од укупног орбиталног момента J датог нивоа, броја електрона у датом јону лантаноида, као и од симетрије и интензитета спољашњег кристалног поља. За описивање понашања јона у кристалном пољу, довољно је посматрати цепање основних мултиплета уграђених јона лантаноида. У посматраном случају, јони ретких земаља смештени су на место итријумових јона, у позицији 4c, са C_s симетријом. Под дејством кристалног поља симетрије ниже од кубне, основни мултиплети Крамерових јона Yb³⁺ (²F_{7/2}) и Er³⁺ (⁴I_{15/2}) цепају се редом на четири и осам Крамерова дублета. Супротно њима, основни мултиплети не-Крамерових јони, попут Tm³⁺ (³H₆) и Ho³⁺ (⁵I₈), са целобројном вредношћу укупног момента J, цепају се редом на

тринаест и седамнаест синглетних стања (Табела 6).

У високотемпературској области, мерена моларна магнетна сусцептибилност је у складу са Кири-Вајсовим законом. Инверзна магнетна сусцептибилност у температурској области од 100 до 300 К искоришћена је за одређивање Кири-Вајсове температуре и Киријеве константе као варирајућих параметара у Кири-Вајсовом закону:

$$\chi^{-1} = \frac{T - \theta}{C},\tag{4.8}$$

где је C Киријева константа и θ Кири-Вајсова температура. Вредности за константе C и θ дате су у Табели 10 за све посматране узорке. За Кири-Вајсову температуру, одређену из високотемпературских мерења, добијене су негативне вредности које указују на доминантност антиферомагнетних изменских интеракција између јона лантаноида. Према теорији средњег поља, добијена Киријева константа C може се искористити за рачунање усредњеног ефективног магнетног момента μ_{eff} као:

$$\mu_{eff}^{exp} = \sqrt{\frac{3k_BC}{N_A\mu_B^2}}\mu_B \approx \sqrt{8C}\mu_B.$$
(4.9)

Добијене вредности из фитованих података за ефективни магнетни момент су редом 2,486 $\mu_{\rm B}$, 2,367 $\mu_{\rm B}$ и 2,524 $\mu_{\rm B}$ за чврсте растворе YF₃:Yb/Er, YF₃:Yb/Tm и YF₃:Yb/Ho. Ефективни магнетни моменти ових једињења могу се израчунати помоћу једначине [126]:

$$\mu_{eff}^2 = 0, 2[\mu_{eff}]_{Yb^{3+}}^2 + 0, 02[\mu_{eff}]_{Ln^{3+}}^2, \qquad (4.10)$$

где су $[\mu_{eff}]_{Yb^{3+}}^2$ и $[\mu_{eff}]_{Ln^{3+}}^2$ магнетни моменти слободних јона Yb³⁺ и Ln³⁺. У Табели 10 су приказане израчунате вредности помоћу претходне релације. Експериментално добијене вредности за магнетне моменте су у добром слагању са вредностима добијеним помоћу једначине 4.10 коришћењем вредности магнетних момената за слободне јоне (4,54 μ_B (Yb³⁺), 9,69 μ_B (Er³⁺), 7,56 μ_B (Tm³⁺) и 10,61 μ_B (Ho³⁺)).

На Слици 35 је приказана зависност изотермалне магнетизације испитиваних узорака M од поља H снимљена на температури од 2K у интервалу примењеног поља од -50 kÖe до 50 kÖe. Одсуство хистерезисне петље и сатурације магнетизације у примењеним магнетним пољима до 50 kÖe указује на очекивано парамагнетно понашање датих чврстих раствора. Криве M(H) се могу фитовати Ланжевеновом функцијом која је дефинисана једначином 4.6. Ланжевенова функција је успешно фитована на све експерименталне податке M(H) (Слика 35).

Табела 10: Кири-Вајсове температуре, Киријеве константе и ефективни магнетни моменти (μ_{eff}^{exp} : експериментални резултати, μ_{eff}^{cal} : израчунати резултати) за узорке YF₃:Yb/Ln.

Ln	$oldsymbol{ heta}[\mathbf{T}]$	$C\left[\frac{emuK}{mol\ddot{O}e} ight]$	$\mu_{ ext{eff}}^{ ext{exp}}[\mu_{ ext{B}}]$	$\mu_{ ext{eff}}^{ ext{cal}}[\mu_{ ext{B}}]$
\mathbf{Er}	-20.6(3)	0.772(1)	2.486(5)	2.442
\mathbf{Tm}	-22.5(2)	0.7004(7)	2.367(3)	2.295
Но	-20.1(2)	0.8469(8)	2.524(4)	2.603

Слика 35: Зависност магнетизације узорака од јачине примењеног поља мерене на T = 2 К. Пуним линијама су представљене израчунате криве.

4.2.4 Емисиони спектри

На Слици 36 су приказани *up*-конверзиони (UC) спектри чврстих раствора $YF_3:Yb^{3+}/Ln^{3+}$ ($Ln^{3+} = Tm^{3+}$, Er^{3+} , Ho^{3+}) настали ласерском побудом таласне дужине 980 nm. Ова таласна дужина одговара ексцитацији са основног (${}^2F_{7/2}$) на први побуђени мултиплет (${}^2F_{5/2}$) у јону Yb^{3+} .

Слика 36: UC спектри за узорке а) YF₃:Yb/Tm, б) YF₃:Yb/Ho, ц) YF₃:Yb/Er.

UC спектри добијени су у опсегу од 350 до 700 nm за узорак допиран јонима Er^{3+} и у спектралном опсегу од 250 до 920 nm за узорке допиране јонима Tm^{3+} и Ho³⁺. У спектру YF₃:Yb³⁺/Tm³⁺ могу се приметити три карактеристична емисиона прелаза на таласним дужинама 477 nm (${}^{1}G_{4} \rightarrow {}^{3}H_{6}$), 700 nm (${}^{3}F_{2,3} \rightarrow {}^{3}H_{6}$) и $807\,\mathrm{nm}~(^{3}\mathrm{H}_{4}\rightarrow {}^{3}\mathrm{H}_{6})$. Ове линије потичу од f-f прелаза у јону Tm^{3+} . Плава (477 nm) и црвена (700 nm) емисија припадају видљивом делу спектра и веома су слабог интензитеа, док је најинтензивнији прелаз смештен на 807 nm и одговара блиској инфрацрвеној емисији (NIR). За испитивани узорак YF₃:Yb³⁺/Ho³⁺ емисиони прелази се налазе на 543 nm $({}^{5}S_{2}/{}^{5}F_{4} \rightarrow {}^{5}I_{8}), 650$ nm $({}^{5}F_{5} \rightarrow {}^{5}I_{8})$ и 748 nm $({}^{5}S_{2}/{}^{5}F_{4} \rightarrow {}^{5}I_{7})$. Код овог узорка емисије које одговарају NIR (780 nm) и црвеној (650 nm) боји у видљивом делу спектра имају мали интензитет док је најизраженија зелена емисија повезана са прелазом ${}^{5}S_{2}/{}^{5}F_{4} \rightarrow {}^{5}I_{7}$ у јону Ho^{3+} . У емисионом спектру трећег узорка YF₃:Yb³⁺/Er³⁺ могу се уочити три карактеристичне емисионе линије на таласним дужинама 524 nm, 542 nm и 660 nm, које се могу повезати редом са прелазима ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}, \; {}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ у јону Ег³⁺. У овом случају постоји потпуна доминантност зелене (прелаз ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$) у односу на црвену емисију (прелаз ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$). У UC спектру YF₃:Yb³⁺/Er³⁺ релативни интензитет зелене и црвене емисије може варирати у зависности од концентрације RE³⁺ јона и методе припреме узорака, тако да у спектру црвена линија може имати већи интензитет у односу на зелену линију и обрнуто [99, 127, 128]. Положаји одговарајућих спектралних линија свих узорака су у доброј сагласности са литературним подацима.

До насељавања високоенергетских нивоа у јонима Er^{3+} , Ho^{3+} и Tm^{3+} долази на основу добро познатог механизма [99]. Како јони лантаноида, попут Er^{3+} , Ho^{3+} и Tm^{3+} , немају енергетске нивое резонантне са 980 nm, Yb^{3+} јони, који имају висок коефицијент апсорпције за ову таласну дужину, апсорбују побудну светлост и долази до електронског прелаза из основног (${}^{2}F_{7/2}$) у прво побуђено (${}^{2}F_{5/2}$) стање. У оваквом систему, побуђени итербијумови јони служе као сензибилизатори и преносе енергију на околне акцепторске јоне (Er^{3+} , Ho^{3+} и Tm^{3+}) побуђујући њихова основна стања (${}^{4}I_{11/2}$, ${}^{3}H_5$ и ${}^{5}I_6$). Неки од ексцитованих акцепторских јона могу даље да се деексцитују на нижи енергетски ниво ${}^{4}I_{13/2}$, ${}^{3}F_4$ и ${}^{5}I_7$, редом за Er^{3+} , Ho^{3+} и Tm^{3+} јоне. Једном када ова стања постану насељена, фотон побудног зрачења или поново пренос енергије са суседног Yb^{3+} јона може довести до насељавања виших стања (${}^{4}F_{7/2}$, ${}^{4}F_{9/2}$, ${}^{3}F_2$ и ${}^{5}F_5$) ових јона. Са ових нивоа такође може доћи до нерадијационог прелаза на нижа стања ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$ јона Er^{3+} , ${}^{3}F_2$ и ${}^{3}F_3$ јона Tm^{3+} , као и стања ${}^{5}I_4$ јона Ho^{3+} . Затим се јони могу вратити у основно или неко међустање емисијом зрачења. Претпостављена UC шема у испитиваним узорцима у фотолуминесцентном експерименту приказана је на Слици 37. Више о механизму и насељавању нивоа јона Er^{3+} биће дато у наредном поглављу.

Слика 37: Шематски приказ UC преноса енергије за узорке $YF_3:Yb^{3+}/Er^{3+}$, $YF_3:Yb^{3+}/Tm^{3+}$ и $YF_3:Yb^{3+}/Ho^{3+}$ настао ласерском побудом од 980 nm.

4.3 Термометријска својства система YF₃:Yb/Er

Метода која се заснива на односу интензитета луминесценције (LIR) базира се на избору две емисионе линије у фотолуминесцентном спектру и одређивању температуре на основу односа њиховог интензитета. До термализације нивоа долази уколико енергетска разлика између њих дозвољава насељавање вишег нивоа искључиво помоћу топлотне енергије и када нерадијациони прелази између два нивоа премашују радијационе. Традиционално се посматра емисија са два блиска, термално спрегнута нивоа, чија је релативна насељеност у спрези са Болцмановом расподелом, зависна од температуре и енергетског процепа. Међутим, код оваквог приступа јавља се проблем ограничености релативне осетљивости:

$$S_R[\% \,\mathrm{K}^{-1}] = \left| \frac{1}{LIR} \frac{dLIR}{dT} \right| \times 100 \,\% = \frac{\Delta E}{kT^2} \times 100 \,\%, \tag{4.11}$$

где она зависи само од вредности ΔE која је, за случај Ln^{3+} суседних побуђених енергетских нивоа, највећа код јона Eu^{3+} за нивое ${}^{5}\mathrm{D}_{1}$ и ${}^{5}\mathrm{D}_{0}$ ($\Delta E \approx 1750 \,\mathrm{cm}^{-1}$). Према томе, ова истраживања наилазе на проблем, мала енергетска разлика даје бољу термализацију нивоа, док са друге стране смањује осетљивост система. Додатно, одабиром LIR система са већом ΔE како би добили што већу осетљивост, на ниским температурама имамо малу насељеност вишег (Н) нивоа што као последицу даје ниску резолуцију мерења због велике неодређености у мерењима. Једно од решења за заобилажење ових проблема је увођење трећег вишег енергетског нивоа не тако удаљеног од традиционално коришћеног Н нивоа. Сада се са L означава најнижи темални ниво, са M је обележен традиционално коришћен виши ниво, док је са Н сада означен новоуведени трећи енергетски ниво. Разлог за увођење још једног нивоа лежи у томе да ако су L и M као и M и H термално спрегнути нивои, онда ће и делимична насељеност нивоа L и H пратити Болцманову расподелу и једначина 2.30 ће важити и за ове нивое. Другим речима, након термализације са L на M, електрони са M нивоа могу да се радијационо или нерадијационо деексцитују или да термализацијом пређу на виши H ниво. Како је $\Delta E_{H-L} = \Delta E_{H-M} + \Delta E_{M-L}$, резултати ће повећати релативну осетљивост за дати јон, док ће се у неким случајевима постићи и термализација са $\Delta E \ge 1750 \,\mathrm{cm}^{-1}$. Међутим, и у овом случају треба бити обазрив с обзиром да Н нивои често имају слаб интензитет, посебно на ниским температурама, што доводи до померања температурског опсега испитивања и смањења

укупне температурске резолуције δT . Ова чињеница се често занемарује у термометријским истраживањима овог типа. Према томе, и релативну осетљивост и релативну неодређеност LIR методе треба истовремено разматрати. У литератури постоји мало истраживања овог типа: на јону Dy³⁺ ($\Delta T = 6,8$ K) [129], јону Nd³⁺ (ΔT није наведено) [130] и јону Er^{3+} ($\Delta T = 1$ K) [131].

Прва LIR истраживања са јоном Er³⁺ почињу пре неколико деценија [132] и од тада ербијум постаје најчешће коришћен јон лантаноида у луминесцентној термометрији. Ако се користе ниво
и $^2\mathrm{H}_{11/2}$ и $^4\mathrm{S}_{3/2},$ међусобно енергетски раздвојени око $750\,\mathrm{cm}^{-1}$, максимално остварена релативна осетљивост износи $1080/T^2$. Тек је недавно истражена ова идеја за повећање осетљивости укључивањем још једног вишег нивоа. У случају тровалентног јона ербијума то је ниво ⁴F_{7/2}. Материјали допирани јонима Er^{3+} и кодопирани јоном Yb^{3+} , испитивани су као потенцијални материјали за луминесцентну термометрију механизмом ирконверзионе побуде. Ова једињења привлаче велику пажњу због ексцитације у блиској инфрацрвеној области, што их чини погодним за мноштво биолошких и медицинских примена, као што је на пример фототермална терапија тумора [133]. У идеалном случају, енергетска разлика између посматраних нивоа би требала да буде довољно мала да обезбеди довољну термализацију на биолошки важним температурама, и са друге стране довољно велика за јасно раздвајање енергетских нивоа у спектру. У идеалном случају ови услови би могли бити испуњени за $\Delta E = 700 \,\mathrm{cm}^{-1}$. Још једна предност за *in vivo* очитавања температуре могла би се остварити уколико су и емисије са LIR нивоа унутар првог биолошког прозора транспаренције (као што је дато за Nd³⁺ у референци [134]). На основу нашег сазнања, таква NIR – NIR очитавања нису до сада забележена за јон Er³⁺.

Материјали допирани Yb³⁺/Er³⁺ јонима поседују све жељене особине које их чине добрим избором за *up*-конверзионе луминесцентне материјале: (1) поседују три термално куплована емисиона нивоа, (2) ексцитацију са широко доступним, јефтиним и моћним ласером таласне дужине 980 nm, (3) емисије у првом биолошком прозору транспаренције са термално куплованих нивоа ${}^{4}S_{3/2}$ и ${}^{2}H_{11/2}$ до првог побуђеног ${}^{4}I_{13/2}$, као и (4) енергетски процеп близу 700 cm⁻¹ између нивоа ${}^{4}S_{3/2}$ и ${}^{2}H_{11/2}$ који је близу идеалног за биолошки релевантна мерења. Након анализе оптичких својстава чврстог раствора YF₃:Yb³⁺/Er³⁺ дошло се до разматрања да овај узорак може дати значајне резултате у области луминесцентне термометрије. У емисионом спектру овог узорка примећене су три карактеристичне емисионе линије на основу којих се може извршити упоредна LIR анализа. У истраживању приказаном у овој дисертацији направљена је компаративна анализа перформанси односа интензитета луминесценције три прелаза настала након побуде зрачењем таласне дужине 980 nm и то (1) однос интензитета традиционално коришћених емисија ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$, (2) емисија ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$, као и (3) NIR емисија ${}^{4}S_{3/2} \rightarrow {}^{4}I_{13/2}$ и ${}^{4}H_{11/2} \rightarrow {}^{4}I_{13/2}$, са циљем одређивања температурске осетљивости и резолуције, и испитивања поновљивости мерења. Добијени резултати LIR анализе објављени су у раду [125].

4.3.1 Резултати LIR анализе

За испитивање термометријских особина система YF₃:Yb³⁺/Er³⁺ снимљени су *ир*-конверзиони емисиони спектри у температурском опсегу од 293 K до 473 K, са кораком од 20 К. За ексцитацију узорка коришћен је ласер чврстог стања таласне дужине 980 nm и детектована је емисија у спектралном опсегу од 450 nm до 870 nm (Слика 38). На емисионом спектру овог узорка може се идентификовати пет карактеристичних линија које потичу од електронских прелаза у Er³⁺ јону. Детектоване емисије се налазе на 485 nm, 523 nm, 542 nm, 793 nm и 840 nm и потичу од прелаза ${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}, {}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}, {}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}, {}^{2}H_{11/2} \rightarrow {}^{4}I_{13/2}$ и ${}^{4}S_{3/2} \rightarrow {}^{4}I_{13/2},$ респективно. Насељеност високоенергетских нивоа у јону ербијума остварује се преко добро познатог механизма. Yb³⁺ јон апсорбује побудно зрачење од 980 nm и даље преноси енергију на основно (у доста мањој мери) и на побуђена стања у јону ${\rm Er}^{3+}.~\Pi$ рви трансфер енергије са итербијумовог на јон ербијума насељава ниво ${}^{4}I_{11/2}$, док други трансфер омогућава прелазак елетрона са ${}^{4}I_{11/2}$ на ${}^{4}F_{7/2}$. Насељеност енергетски нижих нивоа ²H_{11/2} и ⁴S_{3/2} настаје брзим мултифононским деексцитацијама које се такмиче са процесима термализације. Ови механизми омогућавају насељеност сва три термално куплована нивоа (⁴F_{7/2}, ²H_{11/2} и ⁴S_{3/2}) у јону Er^{3+} са релативном насељеношћу зависном од температуре у складу са Болцмановом расподелом.

У циљу испитивања могућности коришћења узорка као температурског сензора посматрана је зависност интензитета емисионих линија на различитим температурама. На Слици 39 је приказана температурска зависност интензитета Er³⁺ UC емисионих линија на 485 nm, 523 nm, 542 nm, 793 nm и 840 nm. Може се приметити да са порастом температуре долази до брзог пада у интензитету емисија са нивоа ${}^{4}S_{3/2}$ на нивое ${}^{4}I_{15/2}$ и ${}^{4}I_{13/2}$ (на 542 и 840 nm), док је интензитет емисија са нивоа ${}^{2}H_{11/2}$ на нивое ${}^{4}I_{15/2}$ и ${}^{4}I_{13/2}$ (на 523 и 793 nm) скоро константан у целом температурском интервалу. Емисија са нивоа ${}^{4}F_{7/2}$ (486 nm) показује благи монотони раст интензитета са температуром, баш као у једињењу испитиваном у истраживању датом у референци [131]. До благог пораста у интензитету емисије са нивоа ${}^{4}F_{7/2}$ долази услед пораста у насељености стања термализацијом са ${}^{4}S_{3/2}$ преко ${}^{2}H_{11/2}$ нивоа. Овај механизам је детаљно објашњен у литератури [131] и показује да су ${}^{4}F_{7/2}$ и ${}^{4}S_{3/2}$ термално повезани и да насељеност ових нивоа подлеже Болцмановом закону расподеле. Овакво понашање интензитета емисионих линија са променом температуре даје одличну основу за вршење компаративне анализе перформанси односа интензитета луминесценције (LIR) три пара прелаза доступних у једињењу са Er^{3+} јоном.

Слика 38: UC емисиони спектар за узорак $YF_3:Yb^{3+}/Er^{3+}$ настао ласерском побудом од 980 nm. На слици је приказана шема ексцитационог механизма, опсег емисије и електронски прелази од значаја у луминесцентној термометрији. Дебљина и боја емисионих линија указује на јачину и боју UC емисије (део емисионог спекта у опсегу од 600-750 nm где се налази емисиона линија која одговара прелазу ${}^4F_{9/2} \rightarrow {}^4I_{15/2}$ је изостављен, с обзиром да није од интереса у овом истраживању).

Нека је са LIR1 означен конвенционални LIR који користи однос интензитета две зелене линије (523 и 542 nm) које одговарају *up*-конверзионим прелазима са нивоа ²H_{11/2} и ⁴S_{3/2} на ниво ⁴I_{15/2}. Са LIR2 је означен однос интензитета плаве и црвене (485 и 542 nm) емисије са ⁴F_{7/2} и ⁴S_{3/2} на ниво ⁴I_{15/2} и овде је енергетска разлика између термално спрегнутих енергетских нивоа већа него у традиционалном LIR1. На крају, са LIR3 је означен однос интензитета две NIR (793 и 840 nm) емисије које одговарају прелазу са ²H_{11/2} и ⁴S_{3/2} на ниво ⁴I_{13/2}. За LIR3 је искоришћен исти пар побуђених нивоа као и за LIR1 (Слика 38).

Слика 39: Температурска зависност интензитета UC емисија у јону ${\rm Er}^{3+}$: 485 nm (тиркизни квадратићи - прелаз ${}^4{\rm F}_{7/2} \rightarrow {}^4{\rm I}_{15/2}), 523$ nm (тамно зелени кружићи - прелаз ${}^2{\rm H}_{11/2} \rightarrow {}^4{\rm I}_{13/2}), 542$ nm (светло зелени троуглићи - прелаз ${}^4{\rm S}_{3/2} \rightarrow {}^4{\rm I}_{15/2}), 793$ nm (првени троуглићи - прелаз ${}^2{\rm H}_{11/2} \rightarrow {}^4{\rm I}_{13/2})$ и 840 nm (сиви ромбови - прелаз ${}^4{\rm S}_{3/2} \rightarrow {}^4{\rm I}_{13/2}).$

Експерименталне вредности добијене за три посматрана LIR-а у облику $\log(LIR)$ = $-\Delta E \frac{1}{k_B T} + \log(B)$ приказане су на Слици 40 (црни квадратни симболи – LIR1, црвени кружни симболи – LIR2 и плави симболи облика троугла – LIR3). График зависности $\log(LIR)$ од $1/k_B T$ је линеарна функција са нагибом – ΔE што представља енергетску разлику између два термализована, побуђена нивоа.

Слика 40: Зависност односа интензитета луминесценције LIR у функцији од $1/k_BT$. Експериментални подаци представљени су симболима, док су фитовани представљени пуним линијама (црном: LIR1 - однос интензитета емисионих линија на 523 и 542 nm које потичу од прелаза ${}^{2}\text{H}_{11/2}$ и ${}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$; црвеном: LIR2 - однос интензитета емисионих линија на 485 и 542 nm од ${}^{4}\text{F}_{7/2}$ и ${}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$; плавом: LIR3 - однос интензитета емисија на 793 и 840 nm од ${}^{2}\text{H}_{11/2}$ и ${}^{4}S_{3/2} \rightarrow {}^{4}\text{I}_{13/2}$ прелаза). Интервали поверења фита приказани су испрекиданим линијама и R² представља проценат варијације у одговору који се објашњава линеарно регресионим моделом.

Вредности ΔE за дате парове енергетских нивоа одређене су фитовањем експерименталних података. Линеарни фит је представљен пуном линијом на Слици 40 (испрекиданим линијама представљени су интервали поверења од 95%), док су добијене вредности фита приказане у Табели 11. На Слици 41 приказане су релативне осетљивости LIR1, LIR2 и LIR3 механизма у функцији температуре израчунате помоћу једначине 4.11, у којој су за вредности ΔE узете оне из фитовања експерименталних LIR података, а у Табели 11 су дате вредности за релативне осетљивости израчунате за температуру T = 293 К. Примећује се да LIR1 и LIR3 методе показују идентичну релативну осетљивост на промену температуре (разлика је у оквиру експерименталне грешке). Овакав резултат је очекиван, јер се и за LIR1 и за LIR3 користи исти пар термализованих нивоа

 $({}^{2}\mathrm{H}_{11/2}$ и ${}^{4}\mathrm{S}_{3/2})$. Енергетска разлика између ова два нивоа добијена из температурске зависности LIR1 и LIR3 износи око $600 \,\mathrm{cm}^{-1}$ и нешто је нижа од вредности добијене из спектралних мерења, што представља уобичајену појаву у луминесцентној термометрији [135].

Табела 11: Параметри добијени фитовањем експерименталних LIR података приказаних на Слици 39 функцијом $\log(\text{LIR}) = -\Delta E \frac{1}{k_B T} + \log(B)$.

LIR	Укључени Er ³⁺ прелази	$\Delta E [cm^{-1}]$	$\log(\mathbf{B})$	${f S_R}[\%K^{-1}]$ на 293,15 K
LIR1	$\frac{{}^{2}\mathrm{H}_{11/2} \rightarrow {}^{4}\mathrm{I}_{15/2}~(523\mathrm{nm})}{{}^{4}\mathrm{S}_{3/2} \rightarrow {}^{4}\mathrm{I}_{15/2}~(542\mathrm{nm})}$	635,0	$1,\!425$	$1,06\pm0,02$
LIR2	$\frac{{}^{4}\mathrm{F}_{7/2} \rightarrow {}^{4}\mathrm{I}_{15/2}~(485\mathrm{nm})}{{}^{4}\mathrm{S}_{3/2} \rightarrow {}^{4}\mathrm{I}_{15/2}~(542\mathrm{nm})}$	1211,0	-0,372	$2,03\pm0,23$
LIR3	$\frac{{}^{2}\mathrm{H}_{11/2} \rightarrow {}^{4}\mathrm{I}_{13/2}~(793\mathrm{nm})}{{}^{4}\mathrm{S}_{3/2} \rightarrow {}^{4}\mathrm{I}_{13/2}~(840\mathrm{nm})}$	583,8	0,623	$0,98\pm0,10$

Табела 12: Неодређености LIR метода на различитим температурама; *σ* - стандардна девијација мерења, *σ*_R - релативна стандардна девијација мерења.

	LIR1	LIR2	LIR3
		$313\mathrm{K}$	
σ	0,00687	0,000034	0,001884
$\sigma_R[\%]$	0,3102	1,3043	1,5618
		353 K	
σ	0,001255	0,000094	0,003444
$\sigma_R[\%]$	0,4082	2,1678	$2,\!1535$
		$413\mathrm{K}$	
σ	0,001242	0,000729	0,015068
$\sigma_R[\%]$	0,2755	7,1597	$6,\!3538$

Међутим, интензитет NIR *up*-конверзионе емисије коришћене за LIR3 је доста мањи у поређењу са интензитетом зелене емисије коришћене за LIR1, па је неодређеност LIR3 мерења доста већа у односу на LIR1 (Табела 12). Из тог разлога је температурска резолуција LIR3, која износи $\Delta T_{LIR3} = 1,8$ К (на 313 К), доста лошија у односу на LIR1, $\Delta T_{LIR1} = 0,3$ К. LIR2 има два пута већу осетљивост (2,03% K⁻¹ на 293 К) у односу на LIR1 и LIR3, што је и очекивано узимајући у обзир да је у овом случају енергетска разлика између побуђених термализованих нивоа два пута већа. Овакав резултат потврђује претпоставку да се може постићи да релативна осетљивост буде већа од тренутно прихваћене границе у термометрији са Ln³⁺ јонима уколико се за LIR методу користи емисија са побуђеног нивоа више енергије у односу на енергетски ниво који се традиционално стално користи код LIR методе Болцмановог типа. Ипак, као и у случају LIR3, емисија са енергетски виших побуђених нивоа је често слабог интензитета, па неодређеност у мерењима може бити доста велика. Овде је температурска резолуција добијена преко LIR2 методе два и по пута лошија у односу на LIR1 методу, што указује на то да већа релативна осетљивост не води нужно већој прецизности мерења.

Слика 41: Релативна осетљивост LIR механизма у функцији температуре. LIR механизам који користи NIR *up*-конверзине емисионе линије (LIR3) показује релативну осетљост $0.87 \pm 0.09\% \mathrm{K}^{-1}$ на 310 K у физиолошки релеватном опсегу температура (опсег $303-348 \mathrm{K}$, који је релевантан за биомедицинску примену луминесцентне термометрије).

Са друге стране, ако се погледа тренд промене интензитета емисионих линија са температуром (Слика 39), може се доћи до закључка да употреба емисионог прелаза са ${}^{4}F_{7/2}$ (LIR2) може имати већи значај при вишим температурама од оних коришћених у овом истраживању, где интензитет ове емисије може бити упоредив са интензитетом емисије са ${}^{2}H_{11/2}$ нивоа. Треба имати у виду да за оваква мерења луминесцентна проба треба да буде температурно стабилна за температуре изнад 480 К.

Слика 42: Поновљивост мерења испитивана за различите односе интензитета емисије (LIR1-црни квадратни симболи; LIR2-црвени кружни симболи; LIR3-плави троугаони симболи). Мале варијације у LIR вредностима су унутар граница грешке мерења. Мерења поновљивости су спроведена на 313 K, 353 K и 413 K.

Поред температурске осетљивости јако је битна поновљивост мерења, односно увек треба добити приближно исте вредности мерења. За испитивање поновљивости мерења, LIR вредности су процењене за 20 мерења, на температурама 313 K, 353 K и 413 K, у секвенцама грејања и хлађења, што је приказано на Слици 42. Добијени су одлични резултати за поновљивост све три LIR методе (уочене мале варијације у односу интензитета емисије су на нивоу експерименталне грешке). Додатно, грејање и хлађење није утицало на однос интензитета линија, што показује добру температурску стабилност материјала у датом температурском опсегу. Овако одлични резултати испитивања поновљивости мерења уобичајени су у луминесцентој термометрији са Ln³⁺ пробама.

На крају, треба истаћи да код овог истраживања постоје два ограничења. Прво, није детаљно проучено како зависност интензитета UC емисионих линија од снаге пумпе утиче на LIR (сличне зависности од снаге ексцитације су уочене за све емисионе траке). Друго, нису проверени услови за постизање Болцманове равнотеже између два ексцитована нивоа (нерадијациони прелази између два нивоа треба да надмаше радијационе у оквиру одговарајућег температурског опсега [136]). Ове анализе, иако важне, превазилазе главни циљ овог истраживања које је требало да прикаже три различита типа LIR-а могућих у луминесцентним пробама са ербијумом као активатором, и да упореди њихове перформансе. На крају, треба напоменути да стално излагање ексцитационом зрачењу од 980 nm може довести до прегревања у биолошким ткивима, услед јаке оптичке апсорпције воде и биолошких узорака [137]. Овај проблем је могуће превазићи коришћењем побудног зрачења од 915 nm, као у референци [137], или коришћењем Nd³⁺ јона као кодопанта када се за побуду луминесценције система користи зрачење од 800 nm [138, 139]. Међутим, у последњем наведеном примеру, недостатак је тај што је веома тешко мерити NIR LIR.
Глава 5

Закључак

Предмет ове доктороске дисертације је YF₃ допиран јонима ретких земаља (Yb³⁺, Yb³⁺/Er³⁺, Yb³⁺/Ho³⁺, Yb³⁺/Tm³⁺). У наставку су дати најзначајнији резултати представљени у овој дисертацији добијени изучавањем структурних, магнетних и оптичких својстава синтетисаних прахова.

Поликристални узорци Yb_xY_{1-x}F₃ и YF₃:Yb/Ln (Ln = Er, Tm, Ho) добијени су флуоридизацијом смеше одговарајућих оксида амонијум хидроген-дифлуоридом. Крајњи узорци добијени су синтезом у два корака, прво сушењем у ваздуху на 170 °C и затим жарењем у редукованој атмосфери на 500 °C. Резултати рендгенодифракционе анализе показали су да су сви крајње добијени чврсти раствори добре кристалиничности, фазно чисти и да кристалишу у орторомбичној крсталној структури типа β – YF₃, просторне групе *Pnma*. Из добијених резултата се види да са повећањем концентрације x, јона Yb³⁺ у једињењу Yb_xY_{1-x}F₃, долази до мале промене у величини параметара решетке, услед мале разлике у радијусу јона итријума и итербијума. На основу резутата микроструктурне анализе, средња величина кристалита свих узорака процењена је на око 50 nm, са малим степеном анизотропије, док сви узорци имају значајно микронапрезање са високим степеном анизотропије.

Магнетна својства испитиваних узорака анализирана су на основу података добијених помоћу SQUID магнетометра. Графици зависности инверзне магнетне сусцептибилности од температуре се не поклапају са Кири-Вајсовим законом у целом температурском интервалу мерења. Овакво понашање се јавља као последица дејства кристалног поља на јоне лантаноида. За чврсте растворе $Yb_xY_{1-x}F_3$ добијена зависност је фитована помоћу једначине 4.2. На основу фитованих података добијени су ефективни магнетни квантни бројеви M_{ieff} за сва четири Крамерова дублета Yb^{3+} јона, као и вредности за енергетске процепе E_i између основног и *i*-тог побуђеног дублета.

Приказани су резултати потпуног цепања основног мултиплета (²F_{7/2}) итербијумовог јона под дејством кристалног поља у матрици YF₃ (место са симетријом C_s). Максимално добијено цепање основног нивоа ${}^2F_{7/2}$ за најразблаженије растворе је у сагласности са јединим експерименталним подацима доступним у литератури. Вредности Кири-Вајсове температуре θ добијене фитовањем нискотемпературске парамагнетне сусцептибилности за узорке Yb_xY_{1-x}F₃ су мале и негативне што указује на предоминантие антиферомагнетне изменске интеракције. Зависност параметра θ је линеарна са концентрацијом итербијумовог јона, што указује на одсуство кластеризације ових јона. Са друге стране, у високотемпературској области зависност $\chi^{-1}(T)$ се може фитовати Кири-Вајсовим законом што је и урађено за узорке YF₃:Yb/Ln (Ln = Er, Tm, Ho) (за температуре изнад 100 К). На основу фитованих параметара израчунати су средњи магнетни моменти који износе 2,486 μ_B (YF₃:Yb/Er), 2,367 μ_B (YF₃:Yb/Tm), 2,524 μ_B (YF₃:Yb/Ho). Графици изотермалне магнетизације у функцији магнетног поља могу се фитовати Ланжевеновом функцијом за све синтетисане узорке што је одлика парамагнетних система.

Оптичка својства YF₃:Yb/Ln (Ln = Er, Tm, Ho) прахова испитивана су фотолуминесцентном спектроскопијом. Добијени *up*-конверзиони спектри показују да синтетисани чврсти раствори могу да емитују карактеристичну плаву, црвену, зелену и блиску инфрацрвену емисију при ексцитацији ласером од 980 nm. Најинтензивније линије налазе се на 807 nm, 542 nm и 543 nm редом за узорке YF₃:Yb/Er, YF₃:Yb/Ho и YF₃:Yb/Tm.

Анализирањем спектра $YF_3:Yb/Er$ једињења дошло се до закључка да ово једињење има све особине које чине добар UC луминесцентни материјал и може да да значајне резултате у области луминесцентне термометрије. У емисионом спектру овог једињења примећене су три емисионе линије које дају три LIR комбинације погодне за луминесценту термометрију. Прво, добро познати LIR1, који користи однос две зелене емисије (на 523 nm и 542 nm), пружа мерење температуре са релативном осетљивошћу од 1,06 ± 0,02% K⁻¹ на 293 K и температурском осетљивошћу 0,3 K када се користи ексцитација од 980 nm. Друго, LIR3, за који се користе две NIR емисије (на 793 nm и 840 nm), показује сличну релативну осетљивост као и LIR1, што је и очекивани резултат с обзиром да NIR емисије потичу од истих побуђених нивоа као и зелене емисије. Овај NIR LIR3 је погодан за биотермалне примене будући да се и побуда и емисије налазе у првом прозору биолоше транспаренције. На 310 K, релативна осетљивост NIR LIR3 је 0,87±0,09% K⁻¹. Међутим, мањи интензитети NIR у односу на зелене емисије довели су до веће несигурности у мерењу, па је за температурску осетљивост добијено само 1,8К. Треће, LIR2, који користи однос плаве и зелене емисије (на 485 nm и 542 nm), тј. емисије које потичу од емисије са енергетских нивоа ${}^{4}F_{7/2}$ и ${}^{4}S_{3/2}$, има два пута већу осетљивост ($2,03\pm0,23\%$ K⁻¹) од традиционалног LIR1. Већа вредност релативне осетљивости добија се услед веће енергетске разлике између нивоа ${}^{4}F_{7/2}$ и ${}^{4}S_{3/2}$ у односу на разлику између ${}^{2}H_{11}$ и ${}^{4}S_{3/2}$.

Резултати луминесцентне термометрије потврђују претпоставке да се ограничење у осетљивости Ln³⁺ LIR-а може превазићи коришћењем емисија са високоенергетских побуђених нивоа. Ипак, већа релативна осетљивост плаво/зеленог LIR2 у поређењу са зелено/зеленим LIR1 не доводи до прецизнијег мерења температуре, будући да добијена температурска резолуција (0,7 K и 0,3 K, редом) фаворизује традиционални LIR1. Плаво/зелена емисија коришћена у LIR2 има добар потенцијал да да добре резултате на температурама вишим од оних коришћених у овој докторској дисертацији, с обзиром да се интензитет ${}^4F_{7/2}$ плаве емисије стално повећава са порастом температуре.

На крају, треба истаћи да се добијене температурске резолуције могу побољшати уколико се добију бољи емисиони спектри у односу на оне коришћене у овој дисертацији. На основу овога, може се закључити да су YF₃:Yb/Er наночестице веома подесне за LIR UC луминесцентну термометрију; једино ограничење представљала је горња граница температуре од 480 K изнад које се интензитет UC емисије неповратно смањује.

Значај истраживања спроведених у оквиру дисертације може се разматрати са становишта доприноса фундаменталном истраживању, као и са становишта потенцијалне примене. Детаљно је урађена карактеризација структурних и магнетних својстава синтетисаних узорака, и на основу података доступних у литератури, може се закључити да су у овом раду први пут детаљно приказани резултати потпуног цепања основног мултиплета (²F_{7/2}) итербијумовог јона под дејством кристалног поља у матрици YF₃. Такође, у другом делу, истраживање је за задатак имало упоређивање термометријских перформанси три различита LIR-а у циљу коришћења узорка YF₃:Yb/Er као температурског сензора. Добијени резултати су потврдили да је могуће повећати температурску осетљивост оваквих UC система повећањем енергетске разлике између два термално спрегнута емитујућа нивоа. Показано је и да већа температурска осетљивост не мора нужно довести до веће прецизности у мерењу температуре и до боље резолуције, јер може бити угрожена већом несигурношћу мерења емисионих линија ниског интензитета.

Добијени резултати указују на потребу за даљим истраживањем специфичних

својстава флуорида допираних ретким земљама која могу наћи примену у различитим областима савремене науке и технологије.

Литература

- [1] https://www.nrcan.gc.ca/our-natural-resources/minerals-mining/minerals-metalsfacts/ rare-earth-elements-facts/20522.
- $[2] https://www.periodni.com/rare_earth_elements.html.$
- [3] C. R. Ronda, T. Jüstel, H. Nikol, Rare earth phosphors: fundamentals and applications, Journal of Alloys and Compounds 275-277 (1998), 669-676.
- [4] P. Alemany, I. D. P. Moreira, R. Castillo, J. Llanos, Electronic, structural, and optical properties of host materials for inorganic phosphors, *Journal of Alloys and Compounds* 513 (2012), 630–640.
- [5] C. E. Secu, C. Bartha, E. Matei, C. Negrila, A. Crisan, M. Secu, Gd³⁺ co-doping influence on the morphological, up-conversion luminescence and magnetic properties of LiYF₄:Y³⁺/Er³⁺ nanocrystals, *Journal of Physics and Chemistry of Solids* 130 (2019), 236-241.
- [6] C. Artini, F. Locardi, M. Pani, I. Nelli, F. Caglieris, R. Masini, J. R. Plaisier, G. A. Costa, Yb-doped Gd₂O₂CO₃: Structure, microstructure, thermal and magnetic behaviour, Journal of Physics and Chemistry of Solids 103 (2017), 59–66.
- [7] A. Maurya, A. Bahadur, A. Dwivedi, A. K. Choudhary, T. P. Yadav, P. K. Vishwakarma, S. B. Rai, Optical properties of Er³⁺, Yb³⁺ co-doped calcium zirconate phosphor and temperature sensing efficiency: Effect of alkali ions (Li⁺, Na⁺ and K⁺), *Journal of Physics and Chemistry of Solids* 119 (2018), 228–237.
- [8] B. Zegaou, N. Benkhettou, D. Rached, A. Reshak, S. Benalia, Electronic structure of GdX₂ (X=Fe, Co and Ni) intermetallic compounds studied by the GGA+U method, *Computational Materials Science* 87 (2014), 172–177.
- [9] T. Kushida, Energy transfer and coopertive optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation, *Journal of the Physical Society of Japan* 34 (1973), 1318–1326.
- [10] S. M. Saini, The role of f-states in the electronic and optical properties of rare-earth trifluorides (RF₃, R=Ce and Gd) a full potential study, *Journal of Materials Science* 47.21 (2012), 7665–7670.

- [11] S. Gai, C. Li, P. Yang, J. Lin, Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties, and Biomedical Applications, *Chemical Reviews* 114 (2014), 2343–2389.
- [12] Z. K. Heiba, M. B. Mohamed, Structural and magnetic properties of Mn doped Ho₂O₃ nanocrystalline, *Journal of Molecular Structure* 1102 (2015), 135–140.
- [13] M. Mitrić, J. Blanuša, T. Barudžija, Z. Jagličić, V. Kusigerski, V. Spasojević, Magnetic properties of trivalent Sm ions in Sm_xY_{2-x}O₃, Journal of Alloys and Compounds 485 (2009), 473–477.
- [14] S. Wang, J. Feng, S. Song, H. Zhang, Rare Earth Fluorides Upconversion Nanophosphors: From Synthesis to Applications in Bioimaging, *CrystEngComm* 3.207890 (2015), 10715-10722.
- [15] A. Laurent, Commodities at a glance, Special issue on rare earths, 2014, 48.
- [16] G. Wang, Q. Peng, Y. Li, Lanthanide-Doped Nanocrystals: Synthesis, Optical-Magnetic Properties, and Applications, Accounts of chemical research 44.5 (2011), 322–332.
- [17] A. J. Kenyon, Recent developments in rare-earth doped materials for optoelectronics, Progress in Quantum Electronics 26 (2002), 225–284.
- [18] S. Sivakumar, F. C. J. M. Van Veggel, M. Raudsepp, Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln³⁺doped LaF₃ nanoparticles, *Journal of the American Chemical Society* 127 (2005), 12464–12465.
- [19] P. Seth, G. Swati, D. Haranath, S. M. Rao, S. Aggarwal, A photoluminescence, thermoluminescence and electron paramagnetic resonance study of EFG grown europium doped lithium fluoride (LiF) crystals, *Journal of Physics and Chemistry of Solids* 118 (2018), 53-61.
- [20] R. Si, Y.-W. Zhang, H.-P. Zhou, L.-D. Sun, C.-H. Yan, Controlled-synthesis, selfassembly behavoir, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals, *Chemistry of Materials* 19 (2007), 18–27.
- [21] L. He, L. Xia, Y. Yang, Q. Zheng, N. Jiang, C. Xu, Y. Liu, D. Lin, Morphologycontrolled synthesis, growth mechanism and fluorescence of YF₃:Eu³⁺, Bi³⁺, Materials Research Bulletin 95.3 (2017), 483–490.
- [22] S.-L. Zhong, Y. Lu, M.-R. Gao, S.-J. Liu, J. Peng, L.-C. Zhang, S.-H. Yu, Monodisperse mesocrystals of YF₃ and Ce³⁺/Ln³⁺ (Ln=Tb, Eu) co-activated YF₃: Shape control synthesis, luminescent properties, and biocompatibility, *Chemistry - A European Journal* 18.17 (2012), 5222–5231.

- [23] X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, L. Fan, Size-dependent upconversion luminescence in Er³⁺/Yb³⁺-Codoped nanocrys-talline yttria: Saturation and thermal effects, *Journal of Physical Chemistry C* 111.36 (2007), 13611–13617.
- [24] C. L. Choi, K. J. Koski, A. C. Olson, A. P. Alivisatos, Luminescent nanocrystal stress gauge, Proceedings of the National Academy of Sciences of the United States of America 107.50 (2010), 21306-21310.
- [25] J. Schrier, D. O. Demchenko, L. W. Wang, A. P. Alivisatos, Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications, *Nano Letters* 7.8 (2007), 2377-2382.
- [26] G.-S. Yi, G.-M. Chow, Water-Soluble NaYF₄:Yb, Er(Tm)/NaYF₄/Polymer Core/Shell/ Shell Nanoparticles with Significant Enhancement of Upconversion Fluorescence, *Chemistry of Materials* 298.5599 (2007), 341–343.
- [27] D. Dosev, M. Nichkova, M. Liu, B. Guo, G.-y. Liu, Y. Xia, B. D. Hammock, I. M. Kennedy, Application of fluorescent Eu:Gd₂O₃ nanoparticles to the visualization of protein micropatterns, *Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III*, vol. 5699, 2005, 473.
- [28] A. Ćirić, S. Stojadinović, M. D. Dramićanin, Luminescence Intensity Ratio thermometry and Judd-Ofelt analysis of TiO₂:Eu³⁺, *Optical Materials* 85 (2018), 261–266.
- [29] M. D. Dramićanin, Luminescence Thermometry, 1st, Woodhead Publishing, Elsevier Science: Cambridge, UK, 2018.
- [30] M. Haase, H. Schäfer, Upconverting nanoparticles, Angewandte Chemie International Edition 50.26 (2011), 5808–5829.
- [31] X. Chen, D. Peng, Q. Ju, F. Wang, Photon upconversion in core-shell nanoparticles, *Chemical Society Reviews* 44.6 (2015), 1318–1330.
- [32] S. Li, X. Wei, S. Li, C. Zhu, C. Wu, Up-Conversion Luminescent Nanoparticles for Molecular Imaging, Cancer Diagnosis and Treatment, International Journal of Nanomedicine 15 (2020), 9431–9445.
- [33] R. Naccache, Q. Yu, J. A. Capobianco, The Fluoride host: Nucleation, growth, and upconversion of lanthanide-doped nanoparticles, *Advanced Optical Materials* 3.4 (2015), 482–509.
- [34] R. K. Sharma, A. V. Mudring, P. Ghosh, Recent trends in binary and ternary rareearth fluoride nanophosphors: How structural and physical properties influence optical behavior, *Journal of Luminescence* 189 (2017), 44–63.

- [35] Q. Han, L. Yan, C. Zhang, M. Zhang, T. Zhang, H. Zheng, Influence of Au nanoparticles on luminescence property of YF₃ submicrostructures doped with Yb³⁺ and Ho³⁺/Eu³⁺ ions, Journal of Alloys and Compounds 715 (2017), 322–328.
- [36] I. A. Razumkova, Y. G. Denisenko, A. N. Boyko, D. A. Ikonnikov, A. S. Aleksandrovsky, N. O. Azarapin, O. V. Andreev, Synthesis and Upconversion Luminescence in LaF₃:Yb³⁺, Ho³⁺, GdF₃:Yb³⁺, Tm³⁺ and YF₃:Yb³⁺, Er³⁺ obtained from Sulfide Precursors, Zeitschrift fur Anorganische und Allgemeine Chemie 645 (2019), 1393– 1401.
- [37] M. Runowski, S. Lis, Nanocrystalline rare earth fluorides doped with Pr³⁺ ions, Journal of Rare Earths 34 (2016), 802–807.
- [38] L. G. Jacobsohn, C. L. Mcpherson, L. C. Oliveira, C. J. Kucera, J Ballato, E. G. Yukihara, Radioluminescence and thermoluminescence of rare earth doped and codoped YF₃, *Radiation Measurements* 106 (2017), 79–83.
- [39] B.P.Sobolev, The rare earth trifluorides. Part 1. The high temperature chemistry of the rare earth triflurides, Barcelona: Institut d'Estudis Catalans; 1st edition, 2000, 520.
- [40] J. Karl A. Gschneidner, Handbook on the Physics and Chemistry of Rare Earths, ed. by G. Adachi, W. J. Evans, S. Lander, M. F. Reid, L. Eyring, 33rd ed., Amsterdam: Elsevier Science B.V., 2003, 147–248.
- [41] B. P. Sobolev, Polymorphism, Isomorphism, and Morphotropy in Trifluorides of Rare-Earth Elements (R) and RF₃-R'F₃ Systems, *Crystallography Reports* 65.4 (2020), 521– 533.
- [42] B. P. Sobolev, The Yttrium, Lanthanum, and Lanthanide Trifluorides: Internal Periodicity of Phase Transitions, *Crystallography Reports* 64.5 (2019), 713–723.
- [43] F. H. Spedding, B. J. Beaudry, D. C. Henderson, J Moorman, High temperature enthalpies and related thermodynamic functions of the trifluorides of Sc, Ce, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb, *The Journal of Chemical Physics* 60 (1974), 1578–1588.
- [44] V. M. Mansmann, Zur Kristallstruktur von Lanthantrifluorid, Zeitschrift f
 ür anorganische und allgemeine Chemie 331.1-2 (1964), 98–101.
- [45] J. P. Laval, R. Mayet, A. Mikou, Cationic ordering in tysonite type structures: II: Crystal structure of α-, β- and γ-baryum hexafluoridouranates (IV), Journal of Fluorine Chemistry 193 (2017), 126–135.
- [46] O. M.Haschke, Rare earth fluorides, Handbook on the Physics and Chemistry of Rare Earths, 1982, chap. 45, 387–460.

- [47] A. Zalkin, D. H. Templeton, The crystal structures of YF₃ and related compounds, Journal of the American Chemical Society 75.10 (1953), 2453-2458.
- [48] Z. Kang, C. Robelin, M. He, P. Chartrand, Thermodynamic evaluation and optimization of the (KF+YF₃), (KCl+YCl₃) and (YF₃+YbF₃) binary systems, *Journal* of Chemistry Thermodinamics 98 (2016), 242–253.
- [49] P. P. Fedorov, B. P. Sobolev, Structural type of hexagonal YF₃ and high temperature modifications of rare-earth trifluorides, isostructural with it, *Kristallografiya* 18.3 (1973), 624–625.
- [50] P. P. Fedorov, N. I. Sorokin, Stabilization of the α-YF₃ structure type by isomorphous substitutions, *Inorganic Materials* 53.12 (2017), 1307–1311.
- [51] G. Marshall, A. J. Wooles, D. P. Mills, W. Lewis, A. J. Blake, S. T. Liddle, Synthesis and characterisation of lanthanide N-trimethylsilyl and -mesityl functionalised bis(iminophosphorano)methanides and -methanediides, *Inorganics* 1.1 (2013), 46–69.
- [52] R. D. Shannon, C. T. Prewitt, Revised values of effective ionic radii, Acta Crystallographica Section B 26.110 (1970), 1046–1048.
- U. V. Valiev, J. B. Gruber, G. W. Burdick, Magnetooptical Spectroscopy of the Rare-Earth Compounds: Development and Application, ed. by P. I. S. Edelman, L. Kirensky, "Scientific Research Publishing" (USA), 2012, 139.
- [54] S. Piskunov, P. A. Žguns, D. Bocharov, A. Kuzmin, J. Purans, A. Kalinko, R. A. Evarestov, S. E. Ali, F. Rocca, Interpretation of unexpected behavior of infrared absorption spectra of ScF₃ beyond the quasiharmonic approximation, *Physical Review B* 93.21 (2016), 1–9.
- [55] D. Karimov, I. Buchinskaya, N. Arkharova, P. Prosekov, V. Grebenev, N. Sorokin, T. Glushkova, P. Popov, Growth from the melt and properties investigation of ScF₃ single crystals, *Crystals* 9.7 (2019), 1–16.
- [56] T. Petzel, F. Schneider, B. Hormann, On the phase diagram of the binary system Sc₂O₃-ScF₃ in the temperature range 1400-1840 K, *Thermochimica Acta* 276.1-2 (1996), 1–6.
- [57] A. J. Freeman, R. Watson, Theoretical Investigation of Some Magnetic and Spectroscopic Properties of Rare-Earth Ions, *Physical Review* 127.6 (1962), 2058–2075.
- [58] J. Jensen, A. R. Mackintosh, Rare Earth Magnetism: Structures and Excitations, Clarendon Press · Oxford, 1991.
- [59] G. H. Dieke; Spectra and energy levels of rare earth ions in crystals, ed. by H. M. Crosswhite, H. Crosswhite, Interscience Publishers, 1968.

- [60] B. G. Wybourne, Spectroscopic Properties of Rare Earths, Interscience (Wiley), 1965, 236.
- [61] E.U.Condon, G.H.Shortley, *The Theory of Atomic Spectra*, Cambridge University Press, 1935.
- [62] M. M. Richard A. Layfield, ed., Lanthanides and Actinides in Molecular Magnetism, vol. 54, 51, Wiley-VCH, 2015.
- [63] B. G. Wybourne, Spectroscopic properties of rare earths, Interscience Publishers, 1965.
- [64] K. N. R Taylor, M. I. Darby, Physics of rare earth solids, Chapman and Hall, 1972, 308.
- [65] J. H. V. Vleck, The International series of Monographs on Physics, Oxford University Press, 1932, 384.
- [66] R. L. Carlin, *Magnetochemistry*, Springer, Berlin, Heidelberg, 1986, 328.
- [67] K.W.H.Stevens, Matrix Elements and Operator Equivalents Connected with the Magnetic Properties of Rare Earth Ions, *Proceedings of the Physical Society. Section A* 65 (1952), 209–215.
- [68] G. Racah, Theory of Complex Spectra. IV, Physical Review 438.1942 (1949), 1352– 1365.
- [69] J. H. V. Vleck, Valence Strength and the Magnetism of Complex Salts, The Journal of Chemical Physics 3 (1935), 807.
- [70] H. Bethe, Termaufspaltung in Kristallen, Annalen der Physik 395.2 (1929), 133–208.
- [71] J. G. Solé, L. E. Bausá, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, 2005, 1–283.
- [72] M. Mitrić, Strukturni parametri i fizičke osobine prostih i mešovitih oksida retkih zemalja, PhD thesis, Univerzitet u Beogradu, Fizički fakultet, 1999.
- [73] H. Steinkemper, S. Fischer, M. Hermie, J. C. Goldschmidt, Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals, New Journal of Physics 15 (2013), 15.
- [74] М. А. Ельяшевич, Спектры редких земель, Москва: Госуд. издат. техн.теорет. лит., 1973, 456.
- [75] W. A. Runciman, Stark-splitting in crystals, Philosophical Magazine 1.11 (1956), 1075–1077.

- [76] P. J. Brown, J. B. Forsyth, P. C. Hansen, M. J. M. Leask, R. C. C. Ward, M. R. Wells, Neutron diffraction determination of magnetic order in holmium trifluoride, HoF₃, Journal of Physics: Condensed Matter 2 (1990), 4471-4484.
- [77] J. Blanuša, M. Mitrić, V. Kusigerski, V. Spasojević, Z. Jagličić, J. Pirnat, Z. Trontelj, Magnetic properties of Er_xY_{1-x}F₃ solid solutions, *Solid State Communications* 133.3 (2005), 157–161.
- [78] K. Krämer, H. Romstedt, H. U. Güdel, P. Fischer, A. Murasik, M. T. Fernandez-Diaz, Three dimensional magnetic structure of ErF₃, European Journal of Solid State and Inorganic Chemistry 33.2-3 (1996), 273–283.
- [79] L. Holmes, H. J. Guggenheim, G. W. Hull, Spin-flip behavior in a ferromagnet, TbF₃, Solid State Communications 8 (1970), 2005–2007.
- [80] A. V. Savinkov, S. L. Korableva, A. A. Rodionov, I. N. Kurkin, B. Z. Malkin, M. S. Tagirov, H. Suzuki, K. Matsumoto, S. Abe, Magnetic properties of Dy³⁺ ions and crystal field characterization in YF₃:Dy³⁺ and DyF₃ single crystals, *Journal of Physics: Condensed Matter* 20.48 (2008), 485220.
- [81] C. R. Ronda, ed., Luminescence: From Theory to Applications, Wiley-VCH, 2007, 276.
- [82] C. Li, J. Lin, Rare earth fluoride nano-/microcrystals : synthesis , surface modification and application, *Journal of Materials Chemistry* 20 (2010), 6831–6847.
- [83] L.J.F.Broer, C.J.Gorter, J.Hoogschagen, On the intensities and the multipole character in the spectra of the rare earth ions, *Physica* 11.4 (1945), 231–250.
- [84] K. B. C. Gorller-Walrand, Spectral intensities of f-f transitions, Handbook on the Physics and Chemistry of Rare Earths, vol. 25, Elsevier, 1998, chap. 167, 101–264.
- [85] B. R. Judd, Optical Absorption Intensities of Rare-Earth Ions, Physical Review 127 (1962).
- [86] G. S. Ofelt, Intensities of Crystal Spectra of RareEarth Ions, The Journal of Chemical Physics 511.May 2012 (1962), 511–520.
- [87] F. Auzel, Upconversion and Anti-Stokes Processes with f and d Ions in Solids, Chemical Reviews 104 (2004), 139–174.
- [88] C. Duan, L. Liang, L. Li, Recent progress in upconversion luminescence nanomaterials for biomedical applications, *Materials Chemistry B* 6 (2018), 192–209.
- [89] K. Ko, Multiphoton microscopy in life sciences in life sciences, Journal of Microscopy 200 (2000), 83–104.

- [90] G. Wang, W. Qin, G. Wei, L. Wang, P. Zhu, R. Kim, D. Zhang, F. Ding, K. Zheng, Synthesis and upconversion luminescence properties of YF₃:Yb³⁺/Tm³⁺ octahedral nanocrystals, *Journal of Fluorine Chemistry* 130.2 (2009), 158–161.
- [91] L. Li, F. Qin, Y. Zhou, Y. Zheng, J. Miao, Z. Zhang, Three-energy-level-cascaded strategy for a more sensitive luminescence ratiometric thermometry, *Sensors and Actuators, A: Physical* 304 (2020), 111864.
- [92] J. M. F. V. Dijk, M. F. H. Schuurmans, On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rareearth ions, *The Journal of Chemical Physics* 78 (1983), 5317–5323.
- [93] K. A. Gschneidner, J. Eyring, LeRoy, eds., Handbook on the Physics and Chemistry of Rare Earths, vol. 26, Elsevier, 1999.
- [94] S. W. Allison, E. Measurements, Remote Thermometry with Thermographic Phosphors: Instrumentation and Applications, *Review of Scientific Instruments* 68 (1997).
- [95] F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Simultaneous phase and size control of upconversion nanocystals through lanthanide doping, *Nature* 463 (2010), 1061–1065.
- [96] C. D. Brites, P. P. Lima, N. J. Silva, A. Millán, V. S. Amaral, F. Palacio, L. D. Carlos, Thermometry at the nanoscale, *Nanoscale* 4.16 (2012), 4799–4829.
- [97] M. D. Dramićanin, Trends in luminescence thermometry, Journal of Applied Physics 128.4 (2020).
- [98] L. Han, Y. Wang, L. Guo, L. Zhao, Y. Tao, Multifunctional ScF₃:Ln³⁺ (Ln = Tb, Eu, Yb, Er, Tm and Ho) nano/microcrystals: Hydrothermal/solvothermal synthesis, electronic structure, magnetism and tunable luminescence properties, *Nanoscale* 6.11 (2014), 5907–5917.
- [99] F. He, L. Wang, N. Na, S. Gai, Y. Wang, P. Yang, Solvothermal Synthesis and Upconversion Properties of YF₃:Ln (Ln = Yb/Er,Yb/Tm,Yb/Ho) Nanoparticles, *Journal* of Nanoscience and Nanotechnology 14.5 (2014), 3503-3508.
- [100] M. Guricová, J. Pinc, J. Malinčik, J. Rak, M. Kuchař, V. Bartuněk, Rare earth nanofluorides: Synthesis using ionic liquids, *Reviews in Inorganic Chemistry* 39.2 (2019), 77–90.
- [101] A. Mukherjee, S. Mishra, N. Krishnamurthy, Thermogravimetric studies and kinetics of decomposition of ammonium yttrium fluoride, *Reaction Kinetics, Mechanisms and Catalysis* 103 (2011), 53–70.

- [102] A. Mukherjee, A. Awasthi, S. Mishra, N. Krishnamurthy, Studies on fluorination of Y₂O₃ by NH₄HF₂, *Thermochimica Acta* 520.1-2 (2011), 145–152.
- [103] H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography 2 (1969), 65–71.
- [104] V. K. Pecharsky, P. Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer, 2005.
- [105] P. Thompson, D. E. Cox, J. B. Hastings, Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al₂O₃, Journal of Applied Crystallography 20.2 (1987), 79– 83.
- [106] https://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html.
- [107] https://fakultaeten.hu-berlin.de/en/mnf/forschung_internationales/grs/salsa/p-a-labs/application-lab/instrumentation/a-labs-sem.
- [108] M. Joshi, A. Bhattacharyya, S. W. Ali, Characterization techniques for nanotechnology applications in textiles, *Indian Journal of Fibre and Textile Research* 33.3 (2008), 304–317.
- [109] R. L. Fagaly, Superconducting quantum interference device instruments and applications, *Review of Scientific Instruments* 77 (2006), 1–45.
- [110] M. McElfresh, Fundamentals of Magnetism and Magnetic Measurements Featuring Quantum Design's Magnetic Porperty Measurement System, Quantum Design, 1994.
- [111] A. Izadi Rad, H. Zandi, M. Fardmanesh, Fate of False Vacuum in Superconducting Flux Qubits (2014).
- [112] V. R. Đorđević, Sinteza i optička karakterizacija sistema La₂O₃-Y₂O₃ dopiranog jonima europijuma i samarijuma, PhD thesis, 2014.
- [113] A. Cirić, Judd-Ofelt Theory and Thermometry of Europium Doped Materials, PhD thesis, University of Belgrade, 2019.
- [114] J. Aleksić, T. Barudžija, D. Jugović, M. Mitrić, M. Bošković, Z. Jagličić, D. Lisjak,
 L. Kostić, Investigation of structural, microstructural and Yb_xY_{1-x}F₃ solid solutions,
 Journal of Physics and Chemistry of Solids 142 (2020).
- [115] J. Aleksić, T. Barudžija, M. Mitrić, M. Bošković, Z Jagličić, S Gyergyek, L. Kostić, Synthesis, structural and magnetic properties of Y_{1-x}Yb_xF₃ solid solution, 13th Conference for Young Scientists in Ceramics, Novi Sad, Serbia, Book of Abstracts (2019), 37.

- [116] J. Aleksić, T. Barudžija, D. Jugović, M. Bošković, M. Mitrić, L. Kostić, Structural and magnetic properties of Y_{1-x}Yb_xF₃ solid solution, Advanced Ceramics and Applications VII: New Frontiers in Multifunctional Material Science and Processing, Belgrade, Serbia, Book of Abstracts (2018), 99.
- [117] E. Talik, P. Zajdel, A. Guzik, D. Skrzypek, L. Lipińska, M. Michalska, Electronic and crystal structure, EPR and magnetic investigations of YF₃:1%RE (RE = Pr, Ho, Er and Tm) and LaF₃:1%Pr nanocrystals, *Journal of Alloys and Compounds* 616 (2014), 556-568.
- [118] G. A. Bain, J. F. Berry, Diamagnetic Corrections and Pascal's Constants, Journal of Chemical Education 85.4 (2008), 1–5.
- [119] J. Blanusa, M. Mitric, D. Rodic, A. Szytula, M. Slaski, An X-ray diffraction and magnetic susceptibility study of Tm_xY_{2-x}O₃, Journal of Magnetism and Magnetic Materials 213.1-2 (2000), 75–81.
- [120] M. P. Davydova, B. N. Kazakov, A. L. Stolov, Parameters of the crystal field acting on rare-earth ions in YF₃ crystal, *Soviet Physics - Solid State* 20.8 (1978), 1378–1382.
- [121] H. E. Flotow, P. A. G. O'Hare, Thermodynamics of the lanthanide trifluorides. IV. the heat capacities of gadolinium trifluoride GdF₃, lutetium trifluoride LuF₃, and yttrium trifluoride YF₃ from 5 to 350 °K, *The Journal of Chemical Physics* 74.5 (1981), 3046–3055.
- [122] F. H. Spedding, D. C. Henderson, High-temperature heat contents and related thermodynamic functions of seven trifluorides of the rare earths: Y, La, Pr, Nd, Gd, Ho, and Lu, *The Journal of Chemical Physics* 54.6 (1971), 2476-2483.
- [123] W. Van Den Heuvel, V. K. Tikhomirov, D. Kirilenko, N. Schildermans, L. F. Chibotaru, J. Vanacken, P. Gredin, M. Mortier, G. Van Tendeloo, V. V. Moshchalkov, Ultralow blocking temperature and breakdown of the giant spin model in Er³⁺-doped nanoparticles, *Physical Review B* 82 (2010), 094421.
- [124] J. Aleksić, T. Barudžija, M. Mitrić, M. Bošković, Z. Ristić, L. Kostić, Structural, magnetic and up-conversion properties of YF₃:Yb/Ln (Ln = Er, Tm, Ho) solid solutions, *Facta Universitatis* 18.451 (2020), 119–129.
- [125] A. Ćirić, J. Aleksić, T. Barudžija, Ž. Antić, V. Đorđević, M. Medić, J. Periša, I. Zeković, M. Mitrić, M. D. Dramićanin, Comparison of three ratiometric temperature readings from the Er³⁺ upconversion emission, *Nanomaterials* 10.4 (2020), 1–10.
- [126] K. Hirose, Y. Doi, H. Yukio, Magnetic properties of $EuLn_2O_4$ (Ln = rare earths), Journal of Solid State Chemistry 182.7 (2009), 1624–1630.

- [127] E. L. Payrer, A. L. Joudrier, P. Aschehoug, R. M. Almeida, J. L. Deschanvres, Upconversion luminescence in Er/Yb-doped YF₃ thin films deposited by PLI-MOCVD, *Journal of Luminescence* 187 (2017), 247–254.
- [128] F. Weng, D. Chen, Y. Wang, Y. Yu, P. Huang, H. Lin, Energy transfer and upconversion luminescence in Er³⁺/Yb³⁺ co-doped transparent glass ceramic containing YF₃ nano-crystals, *Ceramics International* 35 (2009), 2619–2623.
- [129] A. Čirić, S. Stojadinović, M. D. Dramićanin, An extension of the Judd-Ofelt theory to the field of lanthanide thermometry, *Journal of Luminescence* 216 (2019).
- [130] X. Tian, X. Wei, Y. Chen, C. Duan, M. Yin, Temperature sensor based on ladderlevel assisted thermal coupling and thermal-enhanced luminescence in NaYF₄:Nd³⁺, *Optics Express* 22.24 (2014), 30333.
- [131] L. Li, F. Qin, Y. Zheng, Z. Zhang, Strategy for highly sensitive optical ratiometric temperature measurement, *Optical Materials Express* 9.8 (2019), 3260.
- [132] H. Berthou, C. K. Jörgensen, Optical-fiber temperature sensor based on upconversionexcited fluorescence, *Optics Letters* 15.19 (1990), 1100.
- [133] E. Carrasco, B. Del Rosal, F. Sanz-Rodríguez, Á. J. De La Fuente, P. H. Gonzalez, U. Rocha, K. U. Kumar, C. Jacinto, J. G. Solé, D. Jaque, Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles, Advanced Functional Materials 25.4 (2015), 615–626.
- [134] L. Marciniak, K. Prorok, A. Bednarkiewicz, A. Kowalczyk, D. Hreniak, W. Strek, Water dispersible LiNdP₄O₁₂ nanocrystals: New multifunctional NIR-NIR luminescent materials for bio-applications, *Journal of Luminescence* 176 (2016), 144–148.
- [135] M. D. Dramićanin, Sensing temperature via downshifting emissions of lanthanidedoped metal oxides and salts. A review, *Methods and Applications in Fluorescence* 4.4 (2016).
- [136] R. G. Geitenbeek, H. W. De Wijn, A. Meijerink, Non-Boltzmann Luminescence in NaYF₄:Eu³⁺: Implications for Luminescence Thermometry, *Physical Review Applied* 10.6 (2018), 064006.
- [137] Q. Zhan, J. Qian, H. Liang, G. Somesfalean, D. Wang, S. He, Z. Zhang, S. Andersson-Engels, Using 915 nm laser excited Tm³⁺/Er³⁺/Ho³⁺-doped NaYbF₄ upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation, ACS Nano 5.5 (2011), 3744–3757.

- [138] Y. Zhong, G. Tian, Z. Gu, Y. Yang, L. Gu, Y. Zhao, Y. Ma, J. Yao, Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd³⁺-sensitized nanoparticles, Advanced Materials 26.18 (2014), 2831–2837.
- [139] M. Zhang, H. Fan, B. Xi, X. Wang, C. Dong, Y. Qian, Synthesis, Characterization, and Luminescence Properties of Uniform Ln³⁺-Doped YF₃ Nanospindles, *Journal of Physical Chemistry* (2007), 6652–6657.

Биографија

Јелена С. Алексић је рођена 21. марта 1992. године у Нишу. Основну школу "Бубањски хероји" завршила је 2007. године у Нишу, као носилац "Вукове дипломе" и Награде за ученика генерације. Похађала је "Специјализовано одељење за ученике са посебним способностима за физику" у Гимназији "Светозар Марковић" у Нишу, коју је завршила 2011. године као носилац "Вукове дипломе". Током школовања се успешно такмичила из предмета математика и физика и освојила бројне награде на окружном и републичком нивоу.

На Природно-математичком факултету у Нишу завршила је основне студије Физике (2011-2014.), као и мастер студије Физике, модул Примењена физика (2014-2016.), одбранивши мастер рад под називом "Рендгенска дифракциона анализа структуре материјала примењена на прашкасте узорке", са оценом 10,00. Основне студије заршила је са просечном оценом 9,97, док је мастер студије завршила са просечном оценом 9,90. Докторске студије Физике на истом факултету уписала је 2016. године. До сада је положила 13 испита и остварила укупно 151 ЕСПБ са просечном оценом 10,00.

Током школовања била је добитник више стипендија: Стипендије града Ниша (2007/08, 2008/09, 2009/10.), Стипендије за изузетно надарене ученике и студенте (2010/11, 2011/12, 2012/13, 2014/15.) и стипендије "Доситеја" (2013/14, 2015/16.).

Запослена је на Департману за физику Природно-математичког факултета у Нишу од септембра 2015. године, као сарадник у настави, а од априла 2017. године ради као асистент за ужу научну област Експериментална и примењена физика. На факултету изводи лабораторијске и/или рачунске вежбе из следећих предмета: Основе физике чврстог стања (ОАС), Метрологија и обрада резултата мерења (ОАС), Физика (ОАС Биологија), Физика чврстог стања (МАС), Физичка и техничка мерења (МАС), Физика сензора и претварача (МАС) и Физика материјала (МАС).

Од 2019. године је ангажована и као наставник у одељењу за ученике са посебним способностима за рачунарство и информатику при Гимназији "Бора Станковић" у Нишу. Учествује у бројним активностима везаним за промоцију науке, од којих се истичу вишегодишње учешће на фестивалу "Наук није баук", "Европској ноћи истраживача", локалној организацији међународног семинара International Masterclasses под покровитељством CERN и IPPOG за ученике средњих школа, у организацији Смотре ученичких радова на Природно-математичком факултету у Нишу, припреми ученика средњих школа за такмичење из физике. Била је члан локалног организационог одбора школе *High Energy and Particle Physics: Theory and Phenomenology – BS2018* (Ниш, Србија, 2018.), као и конференције *Field Theory and the Early Universe – BW2018*.

Од марта 2018. године је ангажована на пројекту Министарства просвете, науке и технолошког развоја Републике Србије под називом "Електрични пробој гасова, површински процеси и примене" (OI71025). У току свог научноистраживачког рада учествовала је на неколико међународних конференција, коаутор је три рада у међународним часописима категорије M20 и једног у категорији M51.

Библиографија

Радови у врхунским међународним часописима [М21]:

A. Ćirić, <u>J. Aleksić</u>, T. Barudžija, Ž. Antić, V. Djordjević, M. Medić, J. Periša, I. Zeković, M. Mitrić, M. D. Dramićanin, *Comparison of Three Ratiometric Temperature Readings from the* Er³⁺ Upconversion Emission, Nanomaterials 10 (4), 627 (2020) DOI: 10.3390/nano10040627 [IF = 5.076]

Радови у истакнутим међународним часописима [М22]:

 J. Aleksić, T. Barudžija, D. Jugović, M. Mitrić, M. Bošković, Z. Jagličić, D. Lisjak, Lj. Kostić, Investigation of structural, microstructural and magnetic properties of Yb_xY_{1-x}F₃ solid solutions, Journal of Physics and Chemistry of Solids 142, 109449 (2020) DOI: 10.1016/j.jpcs.2020.109449 [IF = 3.995]

Радови у међународним часописима [М23]:

 Lj. Kostić, <u>J. Aleksić</u>, Review of research, development and application of photovoltatic/thermal water systems, Open Physics 18, 1025-1047 (2020) DOI: 10.1515/phys-2020-0213 [IF = 1.067]

Радови у водећим часописима националног значаја [М51]:

 J. Aleksić, T. Barudžija, M. Mitrić, M. Bošković, Z. Ristić, Lj. Kostić, Structural, magnetic and up-conversion properties of YF₃:Yb/Ln (Ln = Er, Tm, Ho) solid solutions, Facta Universitatis, Series: Physics, Chemistry and Technology 18 (2), 119-129 (2020)

Саопштења са међународних скупова штампана у изводу [М34]:

 J. Aleksić, T. Barudžija, D. Jugović, M. Mitrić, M. Bošković, Z. Jagličić, S. Gyergyek, Lj. Kostić, Synthesis, structural and magnetic properties of Y_{1-x}Yb_xF₃ solid solution, 13th Conference for Young Scientists in Ceramics, Novi Sad, Serbia, Book of Abstracts, pp. 37 (2019)

- J. Aleksić, T. Barudžija, D. Jugović, M. Bošković, M. Mitrić, Lj. Kostić, Structural and magnetic properties of Y_{1-x}Yb_xF₃ solid solution, Advanced Ceramics and Applications VII: New Frontiers in Multifunctional Material Science and Processing, Belgrade, Serbia, Book of Abstracts, pp. 99 (2018)
- J. Aleksić, D. Jugović, M. Milović, M. Mitrić, D. Uskoković, Synthesis and structural properties of sodium cobalt oxide, 16th Young Researchers' Conference – Materials Science and Engineering, Belgrade, Serbia, Book of Abstract, pp. 37 (2017)

Изјаве аутора

ИЗЈАВА О АУТОРСТВУ

Изјављујем да је докторска дисертација, под насловом:

Испитивање структурних, магнетних и луминесцентних својстава материјала на бази итријум-трифлуорида допираних јонима ретких земаља

која је одбрањена на Природно-математичком факултету Универзитета у Нишу:

- резултат сопственог истраживачког рада;
- да ову дисертацију, ни у целини, нити у деловима, нисам пријављивала на другим факултетима, нити универзитетима;
- да нисам повредила ауторска права, нити злоупотребила интелектуалну својину других лица.

Дозвољавам да се објаве моји лични подаци, који су у вези са ауторством и добијањем академског звања доктора наука, као што су име и презиме, година и место рођења и датум одбране рада, и то у каталогу Библиотеке, Дигиталном репозиторијуму Универзитета у Нишу, као и у публикацијама Универзитета у Нишу.

У Нишу, 13.06.2022. год.

Потпис аутора дисертације:

Јелена Алексић

ИЗЈАВА О ИСТОВЕТНОСТИ ЕЛЕКТРОНСКОГ И ШТАМПАНОГ ОБЛИКА ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Наслов дисертације:

Испитивање структурних, магнетних и луминесцентних својстава материјала на бази итријум-трифлуорида допираних јонима ретких земаља

Изјављујем да је електронски облик моје докторске дисертације, коју сам предала за уношење у Дигитални репозиторијум Универзитета у Нишу, истоветан штампаном облику.

У Нишу, 13.06.2022. год.

Потпис аутора дисертације:

Јелена Алексић

ИЗЈАВА О КОРИШЋЕЊУ

Овлашћујем Универзитетску библиотеку "Никола Тесла" да у Дигитални репозиторијум Универзитета у Нишу унесе моју докторску дисертацију, под насловом:

Испитивање структурних, магнетних и луминесцентних својстава материјала на бази итријум-трифлуорида допираних јонима ретких земаља

Дисертацију са свим прилозима предала сам у електронском облику, погодном за трајно архивирање.

Моју докторску дисертацију, унету у Дигитални репозиторијум Универзитета у Нишу, могу користити сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons), за коју сам се одлучила.

1. Ауторство (**СС ВУ**)

2. Ауторство – некомерцијално (СС ВУ-NС)

3. Ауторство – некомерцијално – без прераде (CC BY-NC-ND)

4. Ауторство – некомерцијално – делити под истим условима (CC BY-NC-SA)

5. Ауторство – без прераде (СС ВУ-ND)

6. Ауторство – делити под истим условима (СС ВУ-SA)

У Нишу, 13.06.2022. год.

Потпис аутора дисертације:

Јелена Алексић