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Preface

This thesis is focused on the theory of operatorial contractions which arises as an ex-
tent of Perov fixed point theorem. The setting is a cone metric space, both solid and
normal. Main idea was to, inspired by Perov contraction, obtain various fixed point
results for a new class of contractions including positive linear operator with spectral
radius less than one instead, of a contractive constant. Quasi-contraction and Fisher
quasi-contraction could be also redefined in a sense of Perov type mappings and ade-
quate theorems regarding existence of a fixed point are stated. We deal also with a new
approach to Hardy-Rogers theorem in addition to common fixed point problem for pairs
and sequence (family) of mappings. Omitting some requirements, such as linearity, is a
line of study that should be followed in the future research. Theory is illustrated with
important examples that accentuate originality, independence and applicability of col-
lected results. Having in mind analogous results on metric or cone metric space (without
operator as a constant), it is crucial to determine that results presented in this thesis
could not be obtained from those previously published by any renormizaton or scalar-
ization technique and, hence, represent a real improvement and generalization. This is
substantiated with theoretical considerations and several examples demonstrating appli-
cations of our results in the case when well-known analogons are not applicable.

Finding a new approach to well-known and extensively studied problem in the func-
tional analysis was the main motivation. Throughout history, even taking into account
latest research, extensions of Banach theorem went in two directions. Some of the au-
thors altered the set of distances, others just redefined same Banach condition but in
the different surrounding. Only Perov’s result gave a different overview and following
those steps, but on a much wider class of spaces, we define Perov type contractions,
prove some existence and uniqueness results along with numerical estimations that have
impact on convergence, orbit, etc. It should be mentioned that used proof techniques
combine operator theory, linear algebra and nonlinear analysis for the purpose of fixed
point theory.

The dissertation is organized in five different chapters followed by Concluion, Bibiliog-
raphy and Biography of the author. Starting with the introductory chapter 1, we gather
short historical survey, basic concepts and notations needed to follow the storyline of the
manuscript. Section 1.1 is a brief expose on the development of metric fixed point theory
and famous fixed point theorems that will be studied in the following chapters (see sec-
tions 2.2 and 2.3). Defining cone metric space is what follows in section 1.2 along with
simple auxiliary results determining the difference between solid and normal cone. We

1
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introduce the results of Perov in section 1.3 and make connections between cone metric
space and generalized metric space in the sense of Perov. The end of this chapter is a
short overview on some spectral properties of a bounded linear operator on Banach space.

Our main results are gathered in Chapter 2. Perov type fixed point theorem, both on
solid and normal cone metric space, is the most important part of Section 2.1. Normal
case is extension of Perov theorem since the operator (matrix in Perov case) is not nec-
essarily positive. Theory is substantiated with several examples. The Perov condition
is altered by adding a nonlinear operator in the sense of Berinde. Sections 2.2 and 2.3
analyze Perov type quasi-contraction and (p, q)-quasi-contraction pointing out to the
possible future research. Omitting linearity request was important result in this research
and therefore section 2.6 improves results of 2.1 and all published results on this type
of mappings. Section 2.5 includes some new results of Perov type on partially ordered
cone metric spaces that are not yet published. Moreover, this chapter contains several
interesting applications. Important addendum to this chapter is Chapter 4 corroborating
value of presented findings.

Common fixed point problem, as a special case of coincidence problem, is broadly
studied due to important and valuable applications. We unify those results in Chapter
3. In the first part of the chapter, we extend and summarize results for the pair of
mappings. Also, in 3.1, we define interesting properties in order to weaken commuta-
tivity condition. Section 3.2 suggests different approach in order to find common fixed
point property for the sequence of mappings. Therein, as a special case, we additionally
analyze pair of mappings apart from 3.1.

Of a great relevance is the Chapter 4. Perov theorem could originate from Banach
theorem but just for the existence part since estimations regarding distance of the itera-
tive sequence from fixed point are unrelated. Other part of 4.1 is justifying statements on
normal cone metric space and certifying its value. We choose Du’s scalarization method
to examine relation between solid cone metric and metric space, and, as a consequence,
our results and metric fixed point theorems. The fact that operator appears in a con-
tractive condition plays the crucial role in obtaining preferable outcome-it is not possible
to reduce theorems on solid cone metric space presented in this dissertation to Banach
fixed point theorem and equivalent results.

Obtained results have a wide range of application including differential inclusions,
solving operator, integral and differential equations, well-posedness of multiple problems
and Ulam’s stability of functional equations, among others. Overall, in every chapter you
can find several examples implicating different kind of applications. Therefore, in Chap-
ter 5 we cover only two implementations of Perov type results. Section 5.1 substantiates
application in solving integral equations with a few examples representing different kind
of integral equations. However, in 5.2 generalize Ulam’s (or equivalently Ulam-Hyers or
Ulam-Hyers-Rasias ) stability of functional equations is an interesting topic and offers
a lot of possibility for further research. It is interesting that many recently published
Ulam’s stability results using the fixed point techniques are direct corollaries of results
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in this thesis.

In the end we summarize presented result, emphasise their contribution and discuss
further research. For further and more detailed information regarding some previous
research or some results left over, see the reference list in chapter 6.

The content of this thesis is based on several published articles on this topic:

1. M. Cvetković, V. Rakočević, Quasi-contraction of Perov type, App. Math. Com.,
237 (2014), 712-722.

2. M. Cvetković, V. Rakočević, Exstensions of Perov theorem, Carpathian J. Math.,
31 (2015), 181-188.

3. M. Cvetković, V. Rakočević, Fisher quasi-contraction of Perov type, Nonlinear
Convex. Anal., 16 (2015), 339-352.

4. M. Cvetković, V. Rakočević, Common fixed point results for mappings of Perov
type, Math. Nach., 288 (2015) 1873-1890.

5. M. Cvetković, V. Rakočević, Billy E. Rhoades, Fixed point theorems for contractive
mappings of Perov type, Nonlinear Convex. Anal., 16 (2015), 2117-2127.

6. M. Cvetković, V. Rakočević, Fixed point of mappings of Perov type for w-cone
distance, Bul. Cl. Sci. Math. Nat. Sci. Math. 40 (2015), 57-71.

7. D. Ilić, M. Cvetković, Lj. Gajić and V. Rakočević, F ixed points of sequence of Ćirić
generalized contractions of Perov type, Mediterr. J. Math., 13 (2016), 3921-3937.

8. M. Cvetković, Operatorial contractions on solid cone metric spaces, Nonlinear
Convex. Anal., 17 (2016), 1399-1408.

and presented at three international and one national conference along with two guest
lectures at Univeristy Babeş-Bolyai, Cluj-Napoca and UNSW, Sydney. Some papers
were not included in the manuscript:

9. P. S. Stanimirović, D. Pappas, V. N. Katsikis, M. Cvetković, Outer inverse re-
stricted by a linear system, Linear Multilinear Algebra, 63 (2015), 2461-2493.

10. X. Wang, H. Ma, M. Cvetković, A Note on the Perturbation Bounds of W-weighted
Drazin Inverse of Linear Operator in Banach Space, Filomat, 13 (2017), 505-511.

11. M. Cvetković, E. Karapinar, V. Rakočević, Some fixed point results on quasi-b-
metric like spaces, J. Inequal. Appl., 2015 (2015), 2015:374

On the other side, some included results are not yet published (On the equivalence be-
tween Perov fixed point theorem and Banach contraction principle , Filomat, accepted).

It is author’s great pleasure to express sincere gratitude to all my friends and collab-
orators, among them prof. Lj. Gajić, prof. P. S. Stanimirović, prof. A. Petrusel, prof.
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S. Radenović and especially prof. E. Karapinar for useful comments and discussions. I
will stay grateful to my thesis advisor prof. Vladimir Rakočević for all his help, ideas,
remarks, patient and successful guidance throughout this process. In the end, there is
the beginning, so I am very thankful to have such amazing parents and enjoy a great
amount of family’s support, love and encouragement.
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Chapter 1

Introduction

This chapter unifies all necessary notations, definitions and theorems to make this
manuscript self-contained and to properly complement presented results. It includes
many different areas of mathematics such as linear algebra, operator theory, nonlinear
analysis and, the most significant, fixed point theory. For the convenience of a reader,
we divide it in several sections.

First part gives a retrospective on some meaningful and well-known fixed point the-
orems on a complete metric space. Important section is related to the concept of cone
metric space and w-cone distance and fixed point theorems with both solid and normal
cones. Generalized metric space in the sense of Perov along with a Perov contraction is
defined and discussed in the sequence. Additionally, some matrix properties are men-
tioned. Finally, some basic concepts and notations in operator theory are necessary in
dealing with Perov type contraction and therefore included as a preliminary.

1.1 Metric fixed point theory

For a non-empty set X and a mapping f : X 7→ X, x is called a fixed point of f if
f(x) = x. Set of all fixed point for the mapping f is denoted with Fix(f). An arbitrary
mapping on X could have unique, many or none fixed point.

Example 1. (i) f(x) = x, x ∈ R has infinitely many fixed points;

(ii) f(x) = x+ 1, x ∈ N has no fixed points;

(iii) f(x) = x
2
, x ∈ Q, has a unique fixed point.

This choice of examples underlines absence of correlation between continuity and fixed
point. On the other hand, boundedness and linearity also have no effect on existence of
a fixed point.
The easiest way to explain such amount of interest for this topic is analyzing the equation
F (x) = 0 which easily transforms into the fixed point problem. Selected framework will
be metric space.

Definition 1.1.1. Let X be non-empty set and d : X ×X 7→ R mapping such that:

6



1.1. Metric fixed point theory 7

(d1) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y;

(d2) d(x, y) = d(y, x);

(d3) d(x, y) ≤ d(x, z) + d(z, y).

Assuming that elementary facts about metric spaces are well-known, we would not
go into the details.

In metric fixed point, theory we may say that everything starts and finishes with
famous Banach fixed point theorem, also known as the contraction principle. It was first
stated by famous mathematician Stefan Banach in [18] published in 1922. The proof
given by Banach was based on defining an iterative sequence (sequence of successive
approximations) and through decades was shortened and improved. The mapping f on
a metric space X is named contraction if there exists some constant q ∈ (0, 1) such that

d(f(x), f(y)) ≤ qd(x, y), x, y ∈ X.

The constant q is known as the contractive constant. Clearly, every contraction is a
non-expansive mapping. For any self-mapping we define a sequence (xn), xn = f(xn−1),
n ∈ N, for arbitrary x0 ∈ X. It is called a sequence of successive approximations or
iterative sequence

Theorem 1.1.2. ([18]) Let (X, d) be a non-empty complete metric space with a contrac-
tion mapping f : X 7→ X. Then f admits a unique fixed point in X and for any x0 ∈ X
the iterative sequence (xn) converges to the fixed point of f .

Great part of Banach fixed point theorem’s success is based on iterative sequence ad
its convergence which found applications in numerical analysis. It also gives good upper
bound for contractive constant q since if q = 1, fixed point do not necessary exist. (See
Example 1 (ii))

Further on, research went in two separate ways-changing the contractive condition or
changing the setting or even combining the both. Modification of the contractive condi-
tion is expressed through Ćirić and Fisher quasi-contractions, common and coupled fixed
point problem, etc. Otherwise, metric space is replaced with partial metric, b-metric,
cone metric space, space with ω distance and so on. In this section we remain interested
only for results on a complete metric space and suggest to pay attention on two classical
results that extend many different kinds of contractions.

Serbian mathematician Ljubomir Ćiric studied new type of mappings such that, for
some q ∈ (0, 1) and any x, y ∈ X:

d(f(x), f(y)) ≤ qmax
{
d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))

}
,

known as quasi-contraction or Ćirić quasi-contraction. In [39] in 1974. he gave the proof
of a theorem:
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Theorem 1.1.3. If (X, d) is a complete metric space and f : X 7→ X a quasi–
contraction, then it possesses a unique fixed point and the iterative sequence converges
to the fixed point of f .

Example that convinces us that the class of quasi-contraction is strict superset of
contractions in presented in [39].

Fixed point in both Banach and Ćirić theorem, and many similar, is a limit of the
iterative sequence. Therefore, fn, n ∈ N, has negligible impact on a fixed point. Having
that in mind along with Ćiric’s result, it proceeds different condition:

d(fp(x), f qy) ≤ qmax

{
d(f rx, f sy), d(f rx, f r

′
x), d(f sy, f s

′
y) |

0 ≤ r, r′ ≤ p and 0 ≤ s, s′ ≤ q

}
.

for some p, q ∈ N and any x, y ∈ X, determining a (p, q)-quasi-contraction. Fisher ([54])
proved that continuous (p, q)-quasi-contraction on a complete metric space possesses a
unique fixed point. If p = 1 or q = 1, continuity is not necessary. Ćirić quasi-contraction
is a special case for p = q = 1.

A multitude of fixed point theorems on metric spaces will be mentioned in the sequent,
even though just those two will be extensively studied.

1.2 Cone metric space

The concept of a cone metric space (vector valued metric space, K-metric space) has
a long history (see [67, 110, 129]) and first fixed point theorems in cone metric spaces
were obtained by Schröder [122, 123] in 1956. Cone metric space may be considered as a
generalization of metric space and it is focus of the research in metric fixed point theory
last few decades (see, e.g., [2, 6, 19, 44, 57, 73, 79, 117, 112] for more details). Most
authors give credit to Huang and Zhang ([67]), but it is not sufficiently mentioned that
serbian mathematician Kurepa published the same idea much before.

Definition 1.2.1. Let E be a real Banach space with a zero vector θ. A subset P of E
is called a cone if:

(i) P is closed, nonempty and P 6= {θ};

(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax+ by ∈ P ;

(iii) P ∩ (−P ) = {θ}.

Given a cone P ⊆ E, the partial ordering � with respect to P is defined by x � y if
and only if y − x ∈ P . We write x ≺ y to indicate that x � y but x 6= y, while x � y
denotes y − x ∈ intP where intP is the interior of P .
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The cone P in a real Banach space E is called normal if

inf{‖x+ y‖ | x, y ∈ P and ‖x‖ = ‖y‖ = 1} > 0

or, equivalently, if there is a number K > 0 such that for all x, y ∈ P ,

θ � x � y implies ‖x‖ ≤ K ‖y‖ . (1.1)

The least positive number satisfying (1.1) is called the normal constant of P . The cone
P is called solid if int P 6= ∅.

Definition 1.2.2. Let X be a nonempty set, and let P be a cone on a real ordered
Banach space E. Suppose that the mapping d : X ×X 7→ E satisfies:

(d1) θ � d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(d2) d(x, y) = d(y, x), for all x, y ∈ X;

(d3) d(x, y) � d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is a cone metric space.

It is known that the class of cone metric spaces is bigger than the class of metric
spaces.

Example 2. Let E = l1, P = {(xn)n∈N ∈ E | xn ≥ 0, n ∈ N} , (X, ρ) be a metric space

and d : X × X 7→ E defined by d (x, y) =
(
ρ(x,y)
2n

)
n∈N

. Then (X, d) is a cone metric
space.

Example 3. Let X = R, E = Rn and P =
{

(x1, ..., xn) ∈ Rn | xi ≥ 0, i = 1, n
}
. it is

easy to see that d : X ×X 7→ E defined by d(x, y) = (|x− y|, k1|x− y|, . . . , kn−1|x− y|)
is a cone metric on X, where ki ≥ 0 for i = 1, n− 1.

Example 4. ([44]) Let E = C(1)[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ on P = {x ∈ E |
x(t) ≥ 0 on [0, 1]}. Consider, for example,

xn(t) =
1− sinnt

n+ 2
and yn(t) =

1 + sinnt

n+ 2
, n ∈ N.

Deducing ‖xn‖ = ‖yn‖ = 1 and ‖xn + yn‖ = 2
n+2
→ 0 as n → ∞, we see that it is a

non-normal cone.

Presumably, convergent and Cauchy sequence are naturally defined, Suppose that E
is a Banach space, P is a solid cone in E, whenever it is not normal, and � is the partial
order on E with respect to P.

Definition 1.2.3. The sequence (xn) ⊆ X is convergent in X if there exists some x ∈ X
such that

(∀ c� θ)(∃n0 ∈ N)n ≥ n0 =⇒ d(xn, x)� c.
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We say that a sequence (xn) ⊆ X converges to x ∈ X and denote that with lim
n→∞

xn =

x or xn → x, n→∞. Point x is called a limit of the sequence (xn).

Definition 1.2.4. The sequence (xn) ⊆ X is a Cauchy sequence if

(∀ c� θ)(∃n0 ∈ N)n,m ≥ n0 =⇒ d(xn, xm)� c.

Every convergent sequence is a Cauchy sequence, but reverse do not hold. If any
Cauchy sequence in a cone metric space (X, d) is convergent, then X is a complete cone
metric space.

As proved in [67], if P is a normal cone, even in the case intP = ∅, then (xn) ⊆ X
converges to x ∈ X if and only if d(xn, x)→ θ, n→∞. Similarly, (xn) ⊆ X is a Cauchy
sequence if and only if d(xn, xm)→ θ, n,m→∞. Also, if lim

n→∞
xn = x and lim

n→∞
yn = y,

then d(xn, yn)→ d(x, y), n→∞. Let us emphasise that this equivalences do not hold if
P is a non-normal cone.

The following properties are often used (particulary when dealing with cone metric
spaces in which the cone need not to be normal):

(p1) If u � v and v � w then u� w.
(p2) If θ � u� c for each c ∈ intP then u = θ.
(p3) If a � b+ c for each c ∈ intP then a � b.
(p4) If θ � x � y, and λ ≥ 0, then θ � λx � λy.
(p5) If θ � xn � yn for each n ∈ N, and lim

n→∞
xn = x, lim

n→∞
yn = y, then θ � x � y.

(p6) If θ � d(xn, x) � bn and bn → θ, then xn → x.
(p7) If E is a real Banach space with a cone P and if a � λa, where a ∈ P and

0 < λ < 1, then a = θ.
(p8) If c ∈ intP , θ � an and an → θ, then there exists n0 such that for all n > n0 we

have an � c.
From (p8) it follows that the sequence {xn} converges to x ∈ X if d(xn, x) → θ as

n→∞ and {xn} is a Cauchy sequence if d(xn, xm)→ θ as n,m→∞. In the situation
with a non-normal cone we have only one part of Lemmas 1 and 4 from [67]. Also, in
this case the fact that d(xn, yn)→ d(x, y) if xn → x and yn → y is not applicable.
A mapping f : X 7→ X is a continuous mapping on X if for any x ∈ X and a sequence
(xn) ⊆ X such that lim

n→∞
xn = x, it follows lim

n→∞
f(xn) = f(x).

For the purpose of Section 2.4, we collect some basic knowledge regarding ω-distance
on cone metric space.

Function G : X → P is lower semi-continuous at x ∈ X if for any ε � θ, there is
n0 ∈ N such that

G(x) � G(xn) + ε, for all n ≥ n0, (1.2)

whenever (xn) is a sequence in X and xn → x, n→∞.

Definition 1.2.5 ([42]). Let (X, d) be a cone metric space. Then a function p : X×X →
P is called a w-cone distance on X if the following conditions are satisfied:

(w1) p(x, z) � p(x, y) + p(y, z), for any x, y, z ∈ X;
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(w2) For any x ∈ X, p(x, ·) : X → P is lower semi-continuous;

(w3) For any ε in E with θ � ε, there is δ in E with θ � δ, such that p(z, x) � δ
and p(z, y)� δ imply d(x, y)� ε.

It is important to mention that every cone metric is w-cone distance and there exist
w-cone distances such that underlying cone is not normal.

Lemma 1.2.6. ([42])Let (X, d) be a tvs-cone metric space and let p be a w-cone distance
on X. Let (xn) and (yn) be sequences in X, (αn) with θ � αn, and (βn) with θ � βn, be
sequences in E converging to θ, and x, y, z ∈ X. Then:

(i) If p(xn, y) � αn and p(xn, z) � βn for any n ∈ N, then y = z. In particular, if
p(x, y) = θ and p(x, z) = θ, then y = z.

(ii) If p(xn, yn) � αn and p(xn, z) � βn for any n ∈ N, then (yn) converges to z.

(iii) If p(xn, xm) � αn for any n,m ∈ N with m > n, then (xn) is a Cauchy sequence.

(iv) If p(y, xn) � αn for any n ∈ N, then (xn) is a Cauchy sequence.

1.3 Perov theorem

Russian mathematician A. I. Perov ([101]) defined generalized cone metric space by in-
troducing a metric with values in Rn. Then, this concept of metric space allowed him to
define a new class of mappings, known as Perov contractions, which satisfy contractive
condition similar to Banach’s, but with a matrix A ∈ Rn×n with nonnegative entries
instead of a constant q.

Let X be a nonempty set and n ∈ N.

Definition 1.3.1. ([101]) A mapping d : X ×X 7→ Rn is called a vector-valued metric
on X if the following statements are satisfied for all x, y, z ∈ X.

(d1) d(x, y) ≥ 0n and d(x, y) = 0n ⇔ x = y, where 0n = (0, . . . , 0) ∈ Rn;

(d2) d(x, y) = d(y, x);

(d3) d(x, y) ≤ d(x, z) + d(z, y).

If x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, then x ≤ y means that xi ≤ yi, i = 1, n.
We denote by Mn,n the set of all n × n matrices, by Mn,n(R+) the set of all n × n

matrices with nonnegative entries. We write Θn for the zero n×n matrix and In for the
identity n× n matrix and further on we identify row and column vector in Rn.

A matrix A ∈Mn,n(R+) is said to be convergent to zero if Am → Θn, as m→∞.

Theorem 1.3.2. (Perov [101, 102]) Let (X, d) be a complete generalized metric space,
f : X 7→ X and A ∈Mn,n(R+) a matrix convergent to zero, such that

d(f(x), f(y)) ≤ A(d(x, y)), x, y ∈ X.

Then:
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(i) f has a unique fixed point z ∈ X;

(ii) the sequence of successive approximations xn = f(xn−1), n ∈ N, converges to z for
any x0 ∈ X;

(iii) d(xn, z) ≤ An(In − A)−1(d(x0, x1)), n ∈ N;

(iv) if g : X 7→ X satisfies the condition d(f(x), g(x)) ≤ c for all x ∈ X and some
c ∈ Rn, then by considering the sequence yn = gn(x0), n ∈ N, one has

d(yn, z) ≤ (In − A)−1(c) + An(In − A)−1(d(x0, x1)), n ∈ N.

This result found main application in the area of differential equations ([102, 121,
109]).

Perov generalized metric space is obviously a kind of a normal cone metric space.
Defined partial ordering determines a normal cone P = {x = (x1, . . . , xn) ∈ Rn | xi ≥
0, i = 1, n} on Rn, with the normal constant K = 1. Evidently, A(P ) ⊆ P if and only
if A ∈ Mn,n(R+). It appears possible to adjust and probably broadly modify Perov’s
idea on a concept of cone metric space. Preferably, we will get some existence results.
Nevertheless, forcing the transfer of contractive condition on cone metric space would
be possible for some operator A instead of a matrix.

1.4 Operator theory

Observe that with B(E) is denoted the set of all bounded linear operators on a Banach
space E and with L(A) the set of all linear operators on E. As usual, r(A) is a spectral
radius of an operator A ∈ B(E),

r(A) = lim
n→∞

‖An‖1/n = inf
n∈N
‖An‖1/n.

If r(A) < 1, then the series
∞∑
n=0

An is absolutely convergent, I − A is invertible in B(E)

and
∞∑
n=0

An = (I − A)−1.

Also, r((I − A)−1) ≤ 1
1−r(A) .

If A,B ∈ B(E) and AB = BA, then r(AB) ≤ r(A)r(B).
Furthermore, if ‖A‖ < 1, then I − A is invertible and

‖(I − A)−1‖ ≤ 1

1− ‖A‖
.



Chapter 2

Perov type theorems on cone metric
spaces

This chapter gathers main results concerning Perov theorem. First part of extending
Perov’s result included changing the setting-instead of generalized space in the sense of
Perov, we observe cone metric space. However, in that case, distance is a vector in Banach
space, so the contractive matrix A must be omitted and our idea was to implement some
operator on a Banach space instead. Regarding properties of the operator A we must
discuss two different cases, if cone P ⊆ E is solid or normal. Our initial assumption was
to observe bounded linear operators with spectral radius less than 1. If the cone is solid,
additional request would be that A is a positive (increasing) operator. Normal cone
requires stronger norm inequality K‖A‖ < 1, where K is a normal constant of observed
cone metric space.

Another direction of extending Perov theorem involves change of the contractive
condition. The focus was on the most general class of contractions such as Ćirić and
Fisher quasi-contraction. Correlations between those results mutually were discussed
along with links to analogous results on cone metric spaces with a constant instead of
operator and their (equivalent) metric versions.

In the last section of this chapter, the goal is to get a wider class of contractive
operators that would guarantee existence of a fixed point. The strongest request for
operator A that significantly reduces the list of possible candidates, is linearity and it is
successfully excluded in the main result of the last section.

Important part of this chapter are presented examples and comments that emphasise
(non)existence of some connections between obtained results along with some possible
applications.

2.1 Extensions of Perov theorem

In the setting of a cone metric space (X, d), distance is a vector in a Banach space E, and
therefore contractive constant q from the well-known Banach contraction can be replaced
with some operator A : E 7→ E. Accordingly, for some f : X 7→ X, the inequality

d(f(x), f(y)) � A(d(x, y)), x, y ∈ X,

13
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defines a new kind of contractions which we will name Perov type contractions. It
remains to determine necessary and sufficient conditions for the operator A that will
guarantee existence of a fixed point of Perov type contraction. Uniqueness of the fixed
point will be also discussed. Taking into account previously stated Perov theorem, we
may suppose that A should be positive operator on cone metric space and An should
tend to zero operator when n→∞. For that reason, some auxiliary results are presented
in the sequence.

Lemma 2.1.1. Let (X, d) be a cone metric space. Suppose that xn is a sequence in X
and that bn is a sequence in E. If θ � d(xn, xm) � bn for m > n and bn → θ, n → ∞,
then (xn) is a Cauchy sequence.

Proof. For every c � θ there exists n0 ∈ N such that bn � c, n > n0. It follows that
θ � d(xn, xm)� c,m > n > n0, i.e., (xn) is a Cauchy sequence.

Discussing linear operators, it is important to emphasise that the class of positive and
the class of increasing operators coincide. Remark that, without linearity, only inclusion
remains.

Lemma 2.1.2. Let E be Banach space, P ⊆ E cone in E and A : E 7→ E a linear
operator. The following conditions are equivalent:
(i) A is increasing, i.e., x � y implies A(x) � A(y).
(ii) A is positive, i.e., A(P ) ⊆ P .

Proof. If A is monotonically increasing and p ∈ P , then, by definitions, it follows p � θ
and A(p) � A(θ) = θ. Thus, A(p) ∈ P , and A(P ) ⊆ P .
To prove the other implication, let us assume that A(P ) ⊆ P and x, y ∈ E are such that
x � y. Now y − x ∈ P , and so A(y − x) ∈ P . Thus A(x) � A(y).

The results of the following theorem apply to the cone metric spaces in the case
when cone is not necessary normal, and Banach space should not be finite dimensional.
This extends the results of Perov for matrices([101, 102]), and as a corollary generalizes
Theorem 1 of Zima ([130]).

Theorem 2.1.3. Let (X, d) be a complete solid cone metric space, d : X × X 7→ E,
f : X 7→ X, A ∈ B(E), with r(A) < 1 and A(P ) ⊆ P , such that

d(f(x), f(y)) � Ad(x, y), x, y ∈ X. (2.1)

Then:

(i) f has a unique fixed point z ∈ X;

(ii) For any x0 ∈ X the sequence xn = f(xn−1), n ∈ N converges to z and

d(xn, z) � An(I − A)−1(d(x0, x1)), n ∈ N;

(iii) Suppose that g : X 7→ X satisfies the condition d(f(x), g(x)) � c for all x ∈ X and
some c ∈ P . Then if yn = gn(x0), n ∈ N,

d(yn, z) � (I − A)−1(c) + An(I − A)−1(d(x0, x1)), n ∈ N.
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Proof. (i) For n,m ∈ N,m > n, the inequality

θ � d(xn, xm) �
m−1∑
i=n

Ai(d(x0, x1)) �
∞∑
i=n

Ai(d(x0, x1)),

along with r(A) < 1, implies

‖
∞∑
i=n

Ai(d(x0, x1))‖ ≤
∞∑
i=n

‖Ai‖‖(d(x0, x1))‖ → 0, n→∞.

Thus an =
∞∑
i=n

Ai(d(x0, x1)) → θ, n → ∞, and by Lemma 2.1.1 (xn)n∈N is a Cauchy

sequence. Since X is a complete cone metric space, there exists the limit z ∈ X of
sequence (xn).

Let us prove that f(z) = z. Set p = d(z, f(z)), and suppose that c � θ and ε � θ.
Hence, there exists n0 ∈ N such that

d(z, xn)� c andd(z, xn)� ε for all n ≥ n0.

Therefore, p = d(z, f(z)) � d(z, xn+1) + d(xn+1, f(z)) � d(z, xn+1) + A(d(z, xn)) �
c + A(ε) for n ≥ n0. Thus, p � c + A(ε) for each c � 0, and so p � A(ε). Now, for
ε = ε/n, n = 1, 2, . . . , we get

θ � p � A

(
ε

n

)
=
A(ε)

n
, n = 1, 2, . . . .

Because A(ε)
n
→ θ, n→∞, this shows that p = θ. Consequently, z = f(z).

If f(y) = y, for some y ∈ X, then d(z, y) � A(d(z, y)). Thus, d(z, y) � An(d(z, y)),
for each n ∈ N. Furthermore, r(A) < 1 implies

‖An(d(z, y)‖ ≤ ‖An‖‖(d(z, y)‖ → 0, n→∞,

so, d(z, y) = θ and z = y.

(ii) By (i), for arbitrary n ∈ N, we have

d(xn, z) � A(d(xn−1, z)) � · · · � An(d(x0, z)). (2.2)

On the other hand,

d(x0, z) � d(x0, xn) + d(xn, z)

�
n−1∑
i=0

d(xi, xi+1) + An(d(x0, x1)) + An(d(x1, z))

�
i=n∑
i=0

Ai(d(x0, x1)) + An(d(x1, z)).
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Since An(d(x1, z))→ θ, n→∞, we get

d(x0, z) ≤
∞∑
i=0

Ai(d(x0, x1)) = (I − A)−1(d(x0, x1)),

and d(xn, z) � An(I − A)−1(d(x0, x1)).
(iii) Let us remark that for any n ∈ N, d(yn, z) � d(yn, xn) + d(xn, z), and (ii) imply

d(yn, z) � d(yn, xn) + An(I − A)−1(d(x0, x1)).

Now

d(yn, xn) � d(yn, f(yn−1)) + d(f(yn−1), xn)

� c+ A(d(yn−1, xn−1))

� c+ A

(
d(yn−1, f(yn−2)) + d(f(yn−2), xn−1)

)
� c+ A(c) + A2(d(yn−2, xn−2))

� . . . �
n−1∑
i=0

Ai(c)

� (I − A)−1(c),

implies (iii).

Research of the existence of fixed points of set-valued contractions in metric spaces
were initiated by S. B. Nadler [95]. The following theorem is motivated by Nadler’s results
and generalizes the well-known Banach fixed point theorem in several ways. Furthermore,
it is a generalization of the recent result Theorem 3.2 of Borkowski, Bugajewski and Zima
([25]) for a Banach space with a non-normal cone.

Theorem 2.1.4. Let (X, d) be a complete cone metric space, d : X ×X 7→ E, and let
T be a set-valued d–Perov contractive mapping (i.e. there exists A ∈ B(E), such that
r(A) < 1, A(P ) ⊆ P and for any x1, x2 ∈ X and y1 ∈ Tx1 there is y2 ∈ Tx2 with
d(y1, y2) � A(d(x1, x2))) from X into itself such that for any x ∈ X, Tx is a nonempty
closed subset of X. Then there exists x0 ∈ X such that x0 ∈ Tx0, i.e., x0 is a fixed point
of T .

Proof. Suppose that u0 ∈ X and u1 ∈ Tu0. Then there exists u2 ∈ Tu1 such that
d(u1, u2) � A(d(u0, u1)). Thus, we have a sequence (un) in X such that un+1 ∈ Tun and
d(un, un+1) � A(d(un−1, un)) for every n ∈ N. For any n ∈ N,

d(un, un+1) � A(d(un−1, un)) � . . . � An(d(u0, u1)). (2.3)

Assuming m > n,

d(un, um) � d(un, un+1) + d(un+1, un+2) + . . .+ d(um−1, um)

� (An + An+1 + . . .+ Am−1)(d(u0, u1))

� An(I − A)−1(d(u0, u1))→ θ, n→∞.
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Thus, (un) is a Cauchy sequence in X there is some v0 ∈ X such that un → v0 as
n→∞. Furthermore, for any ε� θ there exists m0 ∈ N such that d(um, v0)� ε, m ≥
m0. Thus, for m ≥ max{n,m0},

d(un, v0) � d(un, um) + d(um, v0)

� An(1− A)−1(d(u0, u1)) + ε, for n ≥ 1.

Hence,

d(un, v0) � An(1− A)−1(d(u0, u1)), for n ≥ 1. (2.4)

Let us define wn ∈ Tv0 such that d(un, wn) � A(d(un−1, v0)), for n ≥ 1. So, for any

n ∈ N,
d(un, wn) � A(d(un−1, v0)) � An(I − A)−1(d(u0, u1)). (2.5)

Now, we have

d(wn, v0) � d(wn, un) + d(un, v0) � 2An(I − A)−1(d(u0, u1)).

Thus, (wn) converges to v0. Since Tv0 is closed, we have v0 ∈ Tv0.

Example 5. Let X = E, E = C[0, 1] with the supremum norm and P = {x ∈ E |
x(t) ≥ 0, t ∈ [0, 1]}. Let us define cone metric d : X ×X 7→ E by

d(f, g) = f + g, for f 6= g; d(f, f) = 0, f, g ∈ X.

If T : X 7→ X is defined by T (f) = f/2, f ∈ X, then

d(T (f), T (g)) ≤ A(d(f, g)), f, g ∈ X,

where A : E 7→ E, is a bounded linear operator defined by A(f) = f/2, f ∈ E. Clearly,
‖A‖ = 1/2, and all the assumptions from Theorem 2.1 are satisfied. Hence, T has a
unique fixed point f , f(t) = 0, t ∈ [0, 1].

Remark 2.1.5. Let us remark that the initial assumption A ∈ Mn,n(R+), in Perov
theorem, is unnecessary. This will be illustrated by the following example.

Example 6. Let

A =

 1
2
−1

4
0

1
4
−1

2
0

0 0 1
2

 ,
X =


 x1

1
x3

 | x ∈ R

 and f : X 7→ X, f

 x1
1
x3

 =

 x1+1
2

1
x3+2
3

. Set ‖x‖ =

max{|x1|, |x2|, |x3|} for x =

 x1
x2
x3

 , xi ∈ R, i = 1, 2, 3.
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For arbitrary x ∈ X,

‖Ax‖ = max

{
|1
2
x1 −

1

4
x2|, |

1

4
x1 −

1

2
x2|, |

1

2
x3|
}

≤ max

{
1

2
‖x‖+

1

4
‖x‖, 1

4
‖x‖+

1

2
‖x‖, 1

2
‖x‖
}

=
3

4
‖x‖.

Thus, ‖A‖ ≤ 3
4
. If x =

 −1
1
1

, ‖x‖ = 1, then ‖Ax‖ = 3
4
. Hence, ‖A‖ = 3

4
.

Evidently, r(A) ≤ ‖A‖ = 3/4 and d(f(x), f(y)) � A(d(x, y)), x, y ∈ X. Despite of
A(P ) * P , (1, 1, 1) is a unique fixed point of f in X.

Based on the previous comments, we obtain the next result, where we do not suppose
that A(P ) ⊆ P.

Theorem 2.1.6. Let (X, d) be a complete cone metric space, d : X × X 7→ E, P a
normal cone with a normal constant K, A ∈ B(E) and K‖A‖ < 1. If the condition (2.1)
holds for a mapping f : X 7→ X, then f has a unique fixed point z ∈ X and the sequence
xn = f(xn−1), n ∈ N converges to z for any x0 ∈ X.

Proof. Let x0 ∈ X be arbitrary, xn = f(xn−1), n ∈ N. Inequality

d(xn, xn+1) � A(d(xn−1, xn)), n ∈ N,

implies

‖d(xn, xn+1)‖ ≤ K‖A(d(xn−1, xn))‖ ≤ K‖A‖‖d(xn−1, xn)‖
≤ K2‖A‖2‖d(xn−2, xn−1)‖ ≤ . . . ≤ Kn‖A‖n‖d(x0, x1)‖.

If n,m ∈ N, n < m, then

‖d(xn, xm)‖ ≤
m−1∑
i=n

‖d(xi, xi+1)‖ ≤
m−1∑
i=n

Ki‖A‖i‖d(x0, x1)‖.

Clearly, K‖A‖ < 1, implies that the series
∞∑
i=0

Ki‖A‖i is convergent. Hence, ‖d(xn, xm)‖

→ 0, as n,m→∞. This shows that (xn) is a Cauchy sequence, and there is z ∈ X such
that lim

n→∞
xn = z. Let us prove that f(z) = z. From d(f(z), xn+1) � A(d(z, xn)), we get

‖d(f(z), xn+1)‖ ≤ K‖A(d(z, xn))‖ ≤ K‖A‖‖d(z, xn)‖.

Thus, lim
n→∞

xn = f(z), and so f(z) = z.

It remains to show that z is a unique fixed point of f .
If f(y) = y, y ∈ X, then d(z, y) = d(f(z), f(y)) � A(d(z, y)) it follows ‖d(z, y)‖ ≤
K‖A‖‖d(z, y)‖. Now, K‖A‖ < 1 implies z = y.
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Following the work of Berinde ([22], [23]), we investigate the existence of the fixed
point for the class of Perov type weak contraction.

Theorem 2.1.7. Let (X, d) be a complete cone metric space, d : X ×X 7→ E, f : X 7→
X, A ∈ B(E), with r(A) < 1 and A(P ) ⊆ P , B ∈ L(E) with B(P ) ⊆ P , such that

d(f(x), f(y)) � A(d(x, y)) +B(d(x, f(y))), x, y ∈ X. (2.6)

Then

(i) f : X 7→ X has a fixed point in X and for any x0 ∈ X the sequence xn =
f(xn−1), n ∈ N converges to a fixed point of f .

(ii) If additionally,
B ∈ B(E) and r(A+B) < 1, (2.7)

or

d(f(x), f(y)) � Ad(x, y) +B(d(x, fn0(x))), x, y ∈ X, for some n0 ∈ N, (2.8)

then f has a unique fixed point.

Proof. (i) For a arbitrary x0 ∈ X observe xn = f(xn−1), n ∈ N. Since

d(xn, xn+1) � A(d(xn−1, xn)) +B(d(xn, f(xn−1))) = A(d(xn−1, xn))

� A2(d(xn−2, xn−1)) � . . . � An(d(x0, x1)),

then, as in the proof of Theorem 2.1, we conclude that (xn) converges to some z ∈ X.
Set p = d(z, f(z)), and suppose that c � θ and ε � θ. Hence, there exists n0 ∈ N

such that d(z, xn)� c and d(z, xn)� ε for all n ≥ n0. Now

p = d(z, f(z)) � d(z, xn+1) + d(xn+1, f(z))

� d(z, xn+1) + A(d(z, xn)) +B(d(z, xn+1))

� c+ A(ε) +B(ε), n ≥ n0.

Thus, p � c + A(ε) + B(ε) for each c � θ, and so p � A(ε) + B(ε). Now, for ε = ε/n,
n ∈ N we get

θ � p � A

(
ε

n

)
+B

(
ε

n

)
=
A(ε)

n
+
B(ε)

n
, n ∈ N.

Because A(ε)/n+B(ε)/n→ θ, n→∞, this shows that p = θ.

(ii) If f(y) = y, for some y ∈ X, then

d(z, y) � A(d(z, y)) +B((d(z, y)) = (A+B)((d(z, y)).

Thus d(z, y) � (A+B)n(d(z, y)), for each n ∈ N. Now, r(A+B) < 1 implies

‖(A+B)n(d(z, y)‖ ≤ ‖(A+B)n‖‖(d(z, y)‖ → 0, n→∞,

and z = y. Observe that (2.8) implies d(z, y) � A(d(z, y)), and so

d(z, y) � An(d(z, y)), n ∈ N.

The rest of the proof follows from the proof of Theorem 2.1 (i).
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Remark 2.1.8. Let us notice that in the works of [45] and [129] the authors have studied
(2.1) with more general approach where A is a nonlinear operator and A(P ) ⊆ P . Their
results are given for the case where cone P is a normal cone. For example, the ”policeman
lemma” is essential in their results (see p.p. 369 of [45]) while the policeman lemma is
not true in the case when P is a non-normal cone. Furthermore, we do not suppose that
A(P ) ⊆ P if cone P is normal. If A is a linear operator and obeys (2.1) then results
in [129] are given under special assumptions on A and on a cone P (such that X is a
sequentially complete (in the Weierstrass sense)) and in our results we do not need such
assumptions. Thus, our results and results from ([45], [129]) are independent from each
other.

The following two theorems generalize Theorem 1 of [14] and, consequently, Theorem
2 of [100].

Theorem 2.1.9. Let (X, d) be a cone metric space, P ⊆ E a cone and T : X 7→ X. If
there exists a point z ∈ X such that O(z) is complete, A ∈ B(E) a positive operator with
r(A) < 1, and

d(Tx, Ty) � A(d(x, y)), holds for any x, y = T (x) ∈ O(z), (2.9)

then (T nz) converges to some u ∈ O(z) and

d(T nz, u) � An(I − A)−1(d(z, Tz)), n ∈ N. (2.10)

If (2.9) holds for any x, y ∈ O(z), then u is a fixed point of T .

Proof. First, we will show that {T nz} is a Cauchy sequence.
Since d(T nz, T n+1z) � A(d(T n−1z, T nz)), and A is a positive operator by Lemma 2.1.2,
it follows that

d(T nz, T n+1z) � An(d(z, Tz)),

so, for n,m ∈ N, m > n,

d(T nz, Tmz) �
m−1∑
i=n

d(T iz, T i+1z) �
m−1∑
i=n

Ai(d(z, Tz)),

and, since r(A) < 1 and Lemma 2.1.1 holds, (T nz) is a Cauchy sequence. Because O(z)
is complete, there exists an u ∈ O(z) such that lim

n→∞
T nz = u.

Let n ∈ N be arbitrary and m ≥ n. Then,

d(T nz, u) � d(T nz, Tmz) + d(Tmz, u)

�
m−1∑
i=n

Ai(d(z, Tz)) + d(Tmz, u)

� An
∞∑
i=0

Ai(d(z, Tz)) + d(Tmz, u)

= An(I − A)−1(d(z, Tz)) + d(Tmz, u).
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Taking the limit as m→∞ of the above inequality yields (2.10).
If (2.9) is true for x, y ∈ O(z), then

d(T n+1z, Tu) � A(d(T nz, u)),

and A(d(T nz, u)) → θ, n → ∞, thus (p6) implies lim
n→∞

T nz = Tu. But lim
n→∞

T nz = u

gives us that u is a fixed point of T .

In accordance with Example 6, positivity request could be omitted if P is a normal
cone and we can modify the conditions of Theorem 2.1.9.

Theorem 2.1.10. Let (X, d) be a cone metric space, P ⊆ E a normal cone with a
normal constant K and T : X 7→ X. If there exists a point z ∈ X such that O(z) is
complete and A ∈ B(E) bounded linear operator, K‖A‖ < 1, such that (2.9) holds, then
(T nz) converges to some u ∈ O(z) and

‖d(T nz, u)‖ ≤ (K‖A‖)n

1−K‖A‖
‖d(z, Tz)‖, n ∈ N. (2.11)

If (2.9) holds for every x, y ∈ O(z), then u is a fixed point of T .

Proof. Observe that (2.9) and the fact that P is a normal cone imply

‖d(T nz, T n+1z)‖ ≤ K‖A‖‖d(T n−1z, T nz)‖,

and, inductively, ‖d(T nz, T n+1z)‖ ≤ (K‖A‖)nd(z, Tz) for every n ∈ N. If n,m ∈ N and
m > n, we have

‖d(T nz, Tmz)‖ ≤ K‖
m−2∑
i=n−1

A(d(T iz, T i+1z))‖

≤ K‖A‖
m−2∑
i=n−1

‖d(T iz, T i+1z)‖

≤ K‖A‖
m−2∑
i=n−1

(K‖A‖)i‖d(z, Tz)‖

≤
∞∑
i=n

(K‖A‖)i‖d(z, Tz)‖

≤ (K‖A‖)n

1−K‖A‖
‖d(z, Tz)‖. (2.12)

Because K‖A‖ < 1, (T nz) is a Cauchy sequence and lim
n→∞

T nz = u for some u ∈ O(z).

Notice that, for any n ∈ N,

‖d(T nz, u)‖ ≤ K‖A(d(T n−1z, Tm−1z))‖+K‖d(Tmz, u)‖

≤ (K‖A‖)n

1−K‖A‖
‖d(z, Tz)‖+K‖d(Tmz, u)‖.



2.1. Extensions of Perov theorem 22

Last inequality is obtained from (2.12) for any m ∈ N and, because K‖d(Tmz, u)‖ → 0,
m→∞, obviously (2.10) is satisfied.
If we include x, y ∈ O(z) in the condition (2.11), then

d(T nz, Tu) � A(d(T n−1z, u)), n ∈ N.

and d(T n−1z, u)→ θ, n→∞, so T nz → Tu, n→∞. However, the limit of convergent
sequence is unique, thus Tu = u

Evidently, Theorems 2.1.3, 2.1.6 and 2.1.7 can be obtained as a consequence of The-
orem 2.1.9.

Corollary 2.1.11. Let (X, d) be a complete cone metric space and T : X 7→ X a
mapping satisfying

d(Tx, Ty) � A(d(Tx, x) + d(Ty, y)), x, y ∈ X, (2.13)

for some positive operator A ∈ B(E) with r(A) < 1
2
. Then T has a unique fixed point

u ∈ X and (T nx) converges to u for any x ∈ X.

Proof. Since,
d(Tx, T 2x) � A(I − A)−1(d(Tx, x))

and A(I − A)−1 is a positive operator,

r(A(I − A)−1) ≤ r(A)r((I − A)−1) ≤ r(A)

1− r(A)
< 1,

condition (2.9) of the Theorem 2.1.9 holds. Hence, T has a fixed point u ∈ X. Uniqueness
of the fixed point follows from (2.13). If v ∈ X and T (v) = v, then d(u, v) = d(Tu, Tv) �
A(d(Tu, u) + d(Tv, v)) = A(θ) = θ.

Corollary 2.1.12. Let (X, d) be a complete cone metric space, P a normal cone with
a normal constant K and T : X 7→ X a mapping satisfying (2.13) for some operator
A ∈ B(E) with K‖A‖ < 1

2
. Then T has a unique fixed point u ∈ X and (T nx) converges

to u for any x ∈ X.

Proof. Obviously

‖d(Tx, T 2x)‖ ≤ K‖A‖
1−K‖A‖

‖d(x, Tx)‖,

and K‖A‖/(1 −K‖A‖) < 1. Therefore, analogously to the proof of Theorem 2.1.10, it
is easy to show that T has a fixed point and (2.13) implies uniqueness.

Corollary 2.1.13. Let (X, d) be a complete cone metric space and T : X 7→ X a
mapping satisfying

d(Tx, Ty) � A(d(x, Tmz) + d(y, Tmz)), (2.14)

for some m ∈ N, A ∈ B(E) positive operator, r(A) < 1 and for all x, y, z ∈ X. Then
the iterative sequence (T nx) converges to a unique fixed point of T for any x ∈ X.
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Proof. If any z ∈ X and m ∈ N, set x = Tm−1z and y = Tmz in (2.14)

d(Tmz, Tm+1z) � A(d(Tm−1z, Tmz)),

then
d(T nz, T n+1z) � A(d(T n−1z, T nz)), n ≥ m,

so, as in the proof of Corollary 2.1.11, T has a fixed point. Condition (2.14) gives
uniqueness.

Corollary 2.1.14. Let (X, d) be a complete cone metric space, P ⊆ E a normal cone
with a normal constant K and T : X 7→ X a mapping satisfying (2.14) for some m ∈ N,
A ∈ B(E) such that K‖A‖ < 1 and for all x, y, z ∈ X. Then the iterative sequence
(T nx) converges to a unique fixed point of T for any x ∈ X.

Proof. For any z ∈ X and m ∈ N, setting x = Tm−1z and y = Tmz in (2.14) gives

‖d(Tmz, Tm+1z)‖ ≤ K‖A‖‖d(Tm−1z, Tmz)‖,

and, by similar observations as in the proofs of Corollary 2.1.13 and Corollary 2.1.11, T
has a unique fixed point in X.

2.2 Perov type quasi-contraction

There are many different approaches to the problem of generalizing well-known Banach
contractive condition, and most of them could be altered to suit Perov contraction. It is
also important to mention that many of them are equivalent or imply each other and that
is why we define Perov type quasi-contraction as one of the widest class of contractive
mappings.

Ilić and Rakočević ([71]) introduced a quasi-contractive mapping on a normal cone
metric spaces, and proved existence and uniqueness of a fixed point. Kadelburg, Rade-
nović and Rakočević ([81]), without the normality condition, proved related results, but
only in the case when contractive constant q ∈ (0, 1/2). Later, Haghi, Rezapour and
Shahzad ([118]) and also Gajić and Rakočević ([57]) gave proof of the same result with-
out the additional normality assumption and for q ∈ (0, 1) by providing two different
proof techniques. For the more related results see ([58], [63], [88]).

Definition 2.2.1. Let (X, d) be a cone metric space. A mapping f : X 7→ X such that
for some bounded linear operator A ∈ B(E), r(A) < 1 and for each x, y ∈ X, there exists

u ∈ C(f, x, y) ≡
{
d(x, y), d(x, f(x)), d(y, f(y)), d(x, f(y)), d(y, f(x))

}
,

such that

d(f(x), f(y)) � A(u), (2.15)

is called a quasi-contraction of Perov type.
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If f : X 7→ X, and n ∈ N, set

O(x;n) =
{
x, f(x), f 2(x), ..., fn(x)

}
,

and
O(x;∞) =

{
x, f(x), f 2(x), ...

}
.

Denote by δ(O(x, n)) = max{‖d(a, b)‖ : a, b ∈ O(x, n)}, n ∈ N, x ∈ X and δ(O(x,∞)) =
sup
n∈N

δ(O(x, n)).

Theorem 2.2.2. Let (X, d) be a complete solid cone metric space. If a mapping f :
X 7→ X is a quasi-contraction and A(P ) ⊆ P , then f has a unique fixed point and for
any x ∈ X, the iterative sequence (fn(x))n∈N converges to the fixed point of f .

Proof. We will prove the following two inequalities for arbitrary x ∈ X:

(i) d(fn(x), f(x)) � (I − A)−1A(d(f(x), x)) n ∈ N,

(ii) d(fn(x), x) � (I − A)−1(d(f(x), x)) n ∈ N.

Evidently, (i) is true for n = 1. Suppose that it is true for each m ≤ n.
Since

d(fn+1(x), f(x)) � A(u),

were

u ∈
{
d(fn(x), x), d(fn(x), f(x)), d(x, f(x)),

d(x, fn+1(x)), d(fn(x), fn+1(x))

}
,

we have to consider the following five different cases.

(1) If u = d(fn(x), x), then

d(fn+1(x), f(x)) � A(d(fn(x), x))

� A(d(fn(x), f(x))) + A(d(f(x), x))

� A(I − A)−1A(d(f(x), x)) + A(d(f(x), x))

= [(A− I) + I](I − A)−1A)(d(f(x), x)) + A(d(f(x), x))

= (I − A)−1A(d(f(x), x)).

(2) If u = d(fn(x), f(x)), then A(P ) ⊆ P implies

d(fn+1(x), f(x)) � A(d(fn(x), f(x)))

� A(I − A)−1A(d(f(x), x))

= [(A− I) + I](I − A)−1A(d(f(x), x))

= −A(d(f(x), x)) + (I − A)−1A(d(f(x), x))

� (I − A)−1A(d(f(x), x)).
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(3) Clearly, for u = d(f(x), x), the inequality (i) holds.
(4) Suppose that u = d(x, fn+1(x)), then

d(x, fn+1(x)) ≤ d(x, f(x)) + d(f(x), fn+1(x))

and, since A(P ) ⊆ P ,

d(fn+1(x), f(x)) � A(d(x, f(x))) + A(d(f(x), fn+1(x))).

Therefore,
d(fn+1(x), f(x)) � (I − A)−1A(d(x, f(x))).

(5) If u = d(fn(x), fn+1(x)), then

d(fn+1(x), f(x)) � A(d(fn(x), fn+1(x)),

and because f is a quasi-contraction, there exist some i, j ∈ {0, 1, . . . , n} such that

d(fn(x), fn+1(x)) � An−1+i(d(f(x), f j(x))).

Thus,

d(fn+1(x), f(x)) � An+i(d(f(x), f j(x)))

� An+i(I − A)−1A(d(f(x), x))

= (I − A)−1A(d(f(x), x))−
n+i∑
j=1

Aj(d(f(x), x))

� (I − A)−1A(d(f(x), x)),

unless j = n+ 1.
If j = n+1, then d(fn+1(x), f(x)) � An+i(d(f(x), fn+1(x))) implies d(fn+1(x), f(x)) = θ.
Indeed, since I − An+i is an invertible operator and An+i(P ) ⊆ P , we have

d(fn+1(x), f(x)) � (I − An+i)−1(θ) = θ,

along with d(fn+1(x), f(x)) = θ.
Hence, using the method of the mathematical induction we have proved that the

inequality (i) holds for each n ∈ N.
The inequality (ii) proceeds from (i):

d(fn(x), x) � d(fn(x), f(x)) + d(f(x), x)

� (I − A)−1A(d(f(x), x)) + d(f(x), x)

= (I − A)−1(d(f(x), x)), n ∈ N.

Let us prove that (fn(x))n∈N is a Cauchy sequence in X, thus it is convergent. Sup-
pose that n,m ∈ N, m > n. Mapping f is a quasi-contraction of Perov type, so there
exist i, j ∈ N such that , 1 ≤ i ≤ n, 1 ≤ j ≤ m,

d(fn(x), fm(x)) � An−1(d(f i(x), f j(x))).
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By (i), this implies

d(fn(x), fm(x)) � 2An(I − A)−1(d(f(x), x)).

Since, 2An(I − A)−1(d(f(x), x))→ θ, n→∞, by Lemma 2.1.1, (fn(x))n∈N is a Cauchy
sequence in X. Hence, there exists z ∈ X such that limn f

n(x) = z. Let us prove that z
is a fixed point of f .
Suppose that c� θ and ε� θ. Then there exists n0 ∈ N such that

d(x∗, fn(x))� c, d(fn(x), fm(x))� ε (2.16)

and d(x∗, fn(x))� ε for all n,m ≥ n0.

Now, for any n > n0,

d(x∗, f(z)) � d(z, fn(x)) + d(fn(x), f(z)) (2.17)

� c+ d(fn(x), f(z)).

Furthermore, because f is a quasi-contraction, we have

d(fn(x), f(z)) � A(u), (2.18)

for some

u ∈
{
d(fn−1(x), z), d(fn−1(x), fn(x)), d(fn−1(x), f(z)),

d(z, f(z)), d(z, fn(x))

}
.

If

u ∈
{
d(fn−1(x), z), d(fn−1(x), fn(x)), d(z, fn(x))

}
,

for infinitely many n > n0, then (2.16), (2.17) and (2.18) imply

d(z, f(z)) � c+ A(ε). (2.19)

Because the inequality (2.19) is true for each c� θ we get

d(z, f(z)) � A(ε). (2.20)

If u = d(fn−1(x), f(z)), then

d(fn−1(x), f(z)) � d(fn−1(x), z) + d(z, f(z)),

and A(P ) ⊆ P imply

A(u) � A(d(fn−1(x), z)) + A(d(z, f(z))).

Now, by (2.16), (2.17) and (2.18) we have

d(z, f(z)) � c+ A(ε) + A(d(z, f(z))),
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and, since c� θ is arbitrary,

(I − A)(d(z, f(z))) � A(ε). (2.21)

Thus, because (I − A)−1 is increasing (2.21) implies

d(z, f(z)) � (I − A)−1A(ε). (2.22)

Finally, in the case u = d(z, f(z)), (2.17) and (2.18) imply

d(z, f(z)) � c+ A(d(z, f(z))),

that is

(I − A)(d(z, f(z))) � c. (2.23)

Again, because (I − A)−1 is increasing, (2.23) implies

d(z, f(z)) � (I − A)−1(c). (2.24)

Now, by (2.20), (2.22 ) and (2.24), for ε = ε/n and c = c/n, n ∈ N, it follows,
respectively,

θ � d(z, f(z)) � A

(
ε

n

)
=
A(ε)

n
→ θ, n→∞,

θ � d(z, f(z)) � (I − A)−1A

(
ε

n

)
=

(I − A)−1A(ε)

n
→ θ, n→∞,

and

θ � d(z, f(z)) � (I − A)−1A

(
c

n

)
=

(I − A)−1A(c)

n
→ θ, n→∞, .

Thus, d(z, f(z) = θ, i.e., f(z) = z.
If y is a fixed point of f then

d(z, y) = d(f(z), f(y)) � A(d(z, y)),

that is

(I − A)(d(z, y)) � θ =⇒ d(z, y) � (I − A)−1(θ) = θ, (2.25)

so z = y.

The presented results could be combined with P property presented in ([6]). It is
said that the mapping f has the property P if F (f) = F (fn) for each n ∈ N (if it has no
periodic points). From the proof of the previous theorem, we obtain as a corollary the
extension of the known results Theorem 3.2 of [81] and Corollary 3.4 of [57].

Corollary 2.2.3. Let (X, d) be a complete soilid cone metric space. Let f : X 7→ X be
a quasi-contraction of Perov type with A(P ) ⊆ P and ‖A‖ < 1

2
. Then f has the property

P.
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Proof. Theorem 2.2.2 implies that F (f) 6= ∅. Since, for each n ∈ N, F (f) ⊆ F (fn) is
always valid, only the reverse inclusion has to be proved. So, let z ∈ F (fn), fnz = z.
Theorem 2.2.2 (i) gives

d(z, f(z)) � (I − A)−1A(d(z, f(z))),

that is
d(z, f(z)) � ((I − A)−1)nAn(d(z, f(z))), n ∈ N.

Because ‖A‖ < 1/2, we get

‖((I − A)−1)nAn(d(z, f(z)))‖ ≤ ‖((I − A)−1)n‖‖An‖‖(d(z, f(z)))‖ → θ, n→∞,

therefore f(z) = z. Now, clearly, we get d(u, fu) = 0, that is fu = u.

Observe that the first part of Theorem 2.1.3 follows directly from Theorem 2.2.2.

Example 7. Let X = [0, 3] ∪ [4, 5] and E = C(1)[0, 1] be with a non-normal cone P as
in Example 4. Let us define cone metric d : X ×X 7→ E by

d(x, y) = |x− y| · exp, x, y ∈ X.

If f : X 7→ X is defined by

f(x) =

{
0, if x ∈ [0, 3],
3, if x ∈ [4, 5],

then for each x ∈ [4, 5] we have d(x, f(x)) ≤ 2 · exp, d(f(x), f 2(x)) = 3 · exp. Thus,
d(f(x), f 2(x)) > d(x, f(x)), and f does not obey the condition (2.1). Let us show that
f obeys the condition (2.15).

It is enough to consider only the case x ∈ [0, 3] and y ∈ [4, 5]. Now d(f(x), f(y)) =
3 exp and d(y, f(x)) ≥ 4 · exp. Hence,

d(f(x), f(y)) =
3

4
· 4 · exp ≤ 3

4
max{x− f(y)|, |y − f(x)|} · exp .

Thus, a mapping f : X 7→ X satisfies the condition (2.15), where A : E 7→ E, is a
bounded linear operator defined with A(f) = (3/4)f , f ∈ E. Clearly, ‖A‖ = 3/4, and
all the assumptions from Theorem 2.2.2 are satisfied. Hence, f has a unique fixed point
x = 0 ∈ X.

Based on the Example 6, we obtain the analogue result where we do not suppose
A(P ) ⊆ P.

Lemma 2.2.4. Let (X, d) be a cone metric space, P a normal cone with a normal
constant K, f : X 7→ X a quasi-contraction and K‖A‖ < 1. Then, for every x ∈ X,

(i) for all n ∈ N there exists i ∈ {1, . . . , n} such that

δ(O(x, n)) = ‖d(x, f i(x))‖;
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(ii) For arbitrary n, n0 ∈ N,

δ(O(x, n)) ≤ K

1−Kn0‖A‖n0
δ(O(x, n0)) :

(iii) For any n ∈ N,

δ(O(x,∞)) ≤ K

1−Kn‖A‖n
δ(O(x, n)).

Proof. The next notations will be used to simplify the proof:

δ0 := δ(O(x, n0)), δn := δ(O(x, n)) and δ = δ(O(x,∞)).

(i) Choose arbitrary x ∈ X, n ∈ N and 1 ≤ i < j ≤ n. Since f is a quasi-contraction,
there exists

u ∈
{
d(f i−1(x), f j−1(x)), d(f i−1(x), f i(x)), d(f i−1(x), f j(x)),

d(f i(x), f j−1(x)), d(f j−1(x), f j(x))

}
⊆ O(x, n),

such that

d(f i(x), f j(x)) � A(u).

Now,
‖d(f i(x), f j(x))‖ ≤ K‖A‖‖u‖ ≤ K‖A‖δn < δn.

Hence, δn = ‖d(x, f i(x))‖ for some i ∈ {1, . . . , n}.
(ii) If n ≤ n0, then K

1−Kn0‖A‖n0
> 1, and

δ(O(x, n)) ≤ K

1−Kn0‖A‖n0
δ(O(x, n0)), (2.26)

for every x ∈ X.
Thus, we may assume that n > n0.
There exists i, j ∈ N, 1 ≤ i ≤ n0 and 1 ≤ j ≤ n such that

δ0 = ‖d(x, f i(x))‖ and δn = ‖d(x, f j(x))‖.

If j ≤ n0, then δn = δ0 and (2.2) holds. Otherwise,

d(x, f j(x)) � d(x, fn0(x)) + d(fn0(x), f j(x)).

Clearly,

d(fn0(x), f j(x)) � A

(
u
(1)
n0,j

)
,
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where

u
(1)
n0,j
∈
{
d(fn0−1(x), f j−1(x)), d(fn0−1(x), fn0(x)),

d(fn0−1(x), f j(x))), d(fn0(x), f j−1(x)), d(f j−1(x), f j(x))

}
.

Evidently,

δn ≤ Kδ0 +K‖A‖‖u(1)n0,j
‖

and

u
(1)
n0,j
� A

(
u
(2)
n0,j

)
,

where

u
(2)
n0,j
∈ O

(
fn0−2(x), j − n0 + 2

)
⊆ O(x, n).

Moreover,

δn ≤ Kδ0 +K2‖A‖2‖u(2)n0,j
‖.

Continuing in the same manner, after n0 − 2 more steps, we get

u
(n0−1)
n0,j

� A

(
u
(n0)
n0,j

)
,

for

u
(n0)
n0,j
∈ O(x, n)

and

δn ≤ Kδ0 +Kn0‖A‖n0δn.

As a conclusion, the inequality (2.2) holds for every n, n0 ∈ N.

(iii) By taking into account the definition of δ, (iii) follows directly from (ii).

This auxiliary result contains estimation of δ(O(x,∞)).

Corollary 2.2.5. Under the assumptions of Lemma 2.2.4,

δ(O(x,∞)) ≤ K

1−K‖A‖
‖d(x, f(x))‖, x ∈ X.

Theorem 2.2.6. Let (X, d) be a complete cone metric space and P a normal cone with
a normal constant K. If a mapping f : X 7→ X is a quasi contraction and K‖A‖ < 1,
then f has a unique fixed point y ∈ X and for any x ∈ X, the iterative sequence (fn(x))
converges to the fixed point of f .
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Proof. For arbitrary x ∈ X, let us define xn = fn(x), n ∈ N. Furthermore, there exists

u
(1)
n,n+1 ∈

{
d(fn−1(x), fn(x)), d(fn−1(x), fn+1(x)), d(fn(x), fn+1(x)), d(fn(x), fn(x))

}
,

such that
d(fn(x), fn+1(x)) ≤ A(u

(1)
n,n+1),

implicating
‖d(fn(x), fn+1(x))‖ ≤ K‖A‖‖u(1)n,n+1)‖.

There exists

u
(2)
n,n+1 ∈

{
d(fn−2(x), fn−1(x)), d(fn−2(x), fn(x)), d(fn−1(x), fn(x)),

d(fn−2(x), fn+1(x)), d(fn(x), fn+1(x)), d(fn−1(x), fn(x)),

d(fn−1(x), fn+1(x)), d(fn(x), fn(x))

}
.

such that
‖d(fn(x), fn+1(x))‖ ≤ K2‖A‖2‖u(2)n,n+1‖,

After n− 2 more steps, we get u
(n)
n,n+1 ∈ O(x,∞) such that

‖d(fn(x), fn+1(x))‖ ≤ Kn‖A‖n‖u(n)n,n+1)‖ ≤ Kn‖A‖nδ(O(x,∞)).

Choose arbitrary n,m ∈ N,m > n,

‖d(fn(x), fm(x))‖ ≤
m−1∑
i=n

Ki‖A‖iδ(O(x,∞)) ≤ δ(O(x,∞))
∞∑
i=n

(K‖A‖)i,

so (fn(x))n∈N is a Cauchy sequence in X. Since X is a complete cone metric space, there
exists y ∈ X such that limn f

n(x) = y. It remains to comment if y is a fixed point of f .

For some n ∈ N, there exists

sn ∈
{
d(fn(x), y), d(fn+1(x), y), d(fn+1(x), fn(x)), d(f(y), fn(x)), d(f(y), y)

}
,

such that

d(y, f(y)) � d(y, fn+1(x)) + d(fn+1(x), f(y)) � d(y, fn+1(x)) + A(sn). (2.27)

Consider subsequences (sn,i), i = 1, 5 of the sequence (sn), such that all the elements of
the sequence {sn,i}, i = 1, 5 are of the form, d(fn(x), y), d(fn+1(x), y), d(fn(x), fn+1(x))
, d(fn(x), f(y)) or d(f(y), y), respectively.
It is clear that lim

n→∞
sn,i = θ, i = 1, 2, 3, and lim

n→∞
sn,i = d(y, f(y)), i = 4, 5. Thus

limnA(sn,i) = 0, i = 1, 2, 3, and lim
n→∞

A(sn,i) = A(d(y, f(y))), i = 4, 5. Implementing

(2.27), f(y) = y.

To prove the uniqueness of fixed point, let us suppose that there exist z ∈ X such that
f(z) = z. Then, d(z, y) = d(f(z), f(y)) � A(d(z, y)), and so ‖d(z, y)‖ ≤ K‖A‖‖d(z, y)‖,
i.e., y = z.
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2.3 Fisher quasi-contraction of Perov type

The question that rises looking at the theorems presented in previous sections is do only
x and f(x) have influence on existence of a fixed point. Obvious answer follows from the
sequence of approximations that converges to a fixed point in any initial point x ∈ X.
Having that in mind, it is important to somehow include more values from the orbit of
f in the contractive condition. Combining that idea with the theorems in the Section
2.2, we introduce the concept of (p, q)-quasi-contraction of Perov type.

Similar contractive condition, but including maximum, was defined by Fisher in
[54] along with some fixed point thorems. That is why is also known as Fisher quasi-
contraction. In this section, we extend Fisher’s results on cone metric spaces, but on the
top of that, we incorporate operators in the sense of Perov type contraction.

Definition 2.3.1. Let (X, d) be a cone metric space. A mapping f : X 7→ X such that
for some A ∈ B(E), r(A) < 1 and for some fixed positive integers p and q and every
x, y ∈ X, there exists

u ∈ Fp,q
f (x, y) ≡

{
d(f (r)(x), f (s)(y)), d(f (r)(x), f r

′
(x)), d(f s(y), f s

′
(y)) |

0 ≤ r, r′ ≤ p and 0 ≤ s, s′ ≤ q

}
.

such that d(fp(x), f q(y)) � A(u), is called (p, q)-quasi–contraction (Fisher’s quasi–
contraction, F quasi-contraction) of Perov type.

This theorem extends the results of Perov for matrices, and also, as a corollary,
generalize Theorem 1 of Zima ([130]) along with Theorem 2.2.2.

Theorem 2.3.2. Let (X, d) be a complete cone metric space and P a solid cone. Suppose
that the mapping f : X 7→ X is a (p, q)−quasi-contraction of Perov type, A(P ) ⊆ P and
f continuous. Then f has a unique fixed point in X and for any x ∈ X, the iterative
sequence (fn(x)) converges to the fixed point.

Proof. Without loss of generality, assume that p ≥ q. If x ∈ X be arbitrary and
ω(x) =

∑
0≤i<p d(f i(x), fp(x)), we prove that

d(fn(x), fp(x)) � (I − A)−1A(ω(x)), n ≥ p. (2.28)

Obviously, (2.28) is true for n = p. Suppose that it holds for m ≤ n0 − 1, and observe
m = n0 ≥ p+ 1.
Because f is (p, q)- quasi-contraction, there exist some i, j ∈ N, that

d(fn0(x), fp(x)) � A(d(f i(x), f jx)). (2.29)

(1) If i, j ≤ p, then

d(fn0(x), fp(x)) � A(d(f i(x), fp(x)) + d(fp(x), f j(x)))

� A(ω(x)) � (I − A)−1A(ω(x)).
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Remark that we have used that i 6= j in this inference, but if i = j, (2.28) is fulfilled.

(2) If p < i < n0, j ≤ p then (2.28) and (2.29) imply

d(fn0(x), fp(x)) � A(d(f i(x), fpx)) + A(d(fp(x), f j(x)))

� A(I − A)−1A(ω(x)) + A(ω(x))

= (I − A)−1A(ω(x)).

(3) For p < i < n0, p < j < n0, we have

d(fn0x, fp(x)) � Ak(d(f i0(x), f j0(x))),

where i0 < p or j0 < p and 1 < k.
Assume that at least i0 < p.

d(fn0(x), fp(x)) � Ak(d(f i0(x), fpx)) + Ak(d(fp(x), f j0(x)))

� Ak(ω(x)) + Ak(I − A)−1A(ω(x))

� (I − A)−1A(ω(x)),

since j0 ≤ j < n0, so the inequality (2.28) holds in this case.

(4) In the case i = n0, j ≤ p, the triangle inequality, A(P ) ⊆ P and (2.29) imply

d(fn0(x), fp(x)) � A(d(fn0(x), fp(x))) + A(d(fp(x), f jx))

� A(d(fn0(x), fpx)) + A(ω(x)).

Taking into account (3), (2.28) easily follows.
(5) Finally, consider i = n0 and p < j ≤ n0.

If j = n0, it follows d(fn0(x), fp(x)) � A(θ) and d(fn0(x), fp(x)) = θ.
Otherwise,

d(fn0(x), fp(x)) � A(d(f j(x), fn0(x))) (2.30)

and there exist i0 ≤ j0 ≤ n0, i0 < p and some k0 > 1 such that

d(f j(x), fn0(x)) � Ak0(d(f i0(x), f j0(x))).

If j0 ≤ p, then (2.28) follows by the last inequality and (2.30). Notice that if p < j0 < n0,
then

d(fn0(x), fp(x)) � A1+k0(d(f i0(x), f j0(x)))

� A1+k0(d(f i0(x), fp(x))) + A1+k0(d(fpx, f j0(x)))

� A1+k0(ω(x)) + A1+k0(I − A)−1A(ω(x))

= A1+k0(I − A)−1(I − A+ A)(ω(x))

� (I − A)−1A(ω(x)). (2.31)
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But if j0 = n0, then

d(fn0(x), fp(x)) � A1+k0(d(f i0(x), fpx)) + A1+k0(d(fp(x), fn0(x))). (2.32)

Then, for some k1 ≥ 1 and i1 ≤ j1 ≤ n0, i1 < p, d(fp(x), fn0(x)) � Ak1(d(f i1(x), f j1(x))),
so by (2.32) we get

d(fn0(x), fp(x)) � A1+k0(d(f i0(x), fpx)) + A1+k0+k1(d(f i1(x), f j1(x))). (2.33)

Again, if j1 < n0, as in (2.31), we have (2.28). Otherwise,

d(fn0(x), fp(x)) � A1+k0(d(f i0(x), fpx)) + A1+k0+k1(d(f i1(x), fpx))

+A1+k0+2k1(d(f i1(x), fn0(x))).

Hence, for arbitrary n ∈ N,

d(fn0(x), fp(x)) � A1+k0(d(f i0(x), fpx))

+
n−1∑
m=1

A1+k0+mk1(d(f i1(x), fpx)) + A1+k0+nk1(d(f i1(x), fn0(x)))

�
n−1∑
m=0

A1+k0+mk1A(ω(x)) + A1+k0+nk1(d(f i1(x), fn0(x)))

� (I − A)−1A1+k0(ω(x)) + A1+k0+nk1(d(f i1(x), fn0(x)))

� (I − A)−1A(ω(x)) + A1+k0+nk1(d(f i1(x), fn0(x))).

However, A1+k0+nk1(d(f i1(x), fn0(x)))→ θ, n→∞. For each c� θ there exists nc ∈ N
such that A1+k0+nk1(d(f i1(x), fn0(x)))� c for n > nc, so

d(fn0(x), fp(x)) � (I − A)−1A(ω(x)) + c, c� θ,

and d(fn0(x), fp(x)) � (I − A)−1A(ω(x)).
Therfore, (2.28) is true for any n ∈ N. The inequality

d(fnx, f j(x)) � d(fnx, fp(x)) + d(fp(x), f j(x))

� (I − A)−1A(ω(x)) + ω(x)

= (I − A)−1(ω(x)).

proceeds from(2.28). Mapping f is a (p, q)-quasi-contraction, thus for n > m ≥ p,
m = kp+ r, 0 ≤ r < p, k ≥ 1,

d(fn(x), fm(x)) � Ak(d(f i(x), f j(x))) � Ak(I − A)−1(ω(x)),

where 0 ≤ i ≤ j ≤ n and i ≤ p.
Remark that Ak(I − A)−1(ω(x)) → θ, k → ∞ (m → ∞), (fn(x)) is a Cauchy sequence
in X and z = lim

n→∞
fn(x) ∈ X is a fixed point of f since f is a continuous it follows that

f(z) = z. The uniqueness of z follows from the definition of a (p, q)-quasi-contraction.
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In the particular case of Theorem 2.3.2 when q = 1 (or p = 1), the continuity of f is
unnecessary (see [54]).

Theorem 2.3.3. Let (X, d) be a complete cone metric space and P a solid cone. If the
mapping f : X 7→ X is a (p, 1)-quasi-contraction of Perov type, A(P ) ⊆ P , then f has a
unique fixed point in X and for any x ∈ X, the iterative sequence (fn(x)) converges to
the fixed point of f .

Proof. As in the proof of Theorem 2.3.2, the sequence (fn(x)) is a Cauchy sequence for
any x ∈ X and has the limit z in X. For n > p,

d(z, f(z)) � d(z, fn(x)) + d(fn(x), f(z))

= d(z, fn(x)) + d(fpfn−p(x), f(z))

� d(z, fn(x)) + A(un),

where un belongs to the set{
d(f rfn−p(x), f(z)), d(f rfn−p(x), z), d(f rfn−p(x), f r

′
fn−p(x)), d(z, f(z)) : 0 ≤ r, r′ ≤ p

}
.

But

d(f rfn−p(x), f(z)) ≤ d(f rfn−p(x), z) + d(z, f(z)).

Since lim
n→∞

fn(x) = z, for each c� 0 choose n0 such that d(fnx, z), d(fn(x), fm(x))� c,

n,m ≥ n0. If n > n0 + p, then

d(z, f(z)) � c+ A(d(z, f(z))) + A(c) for any c� θ.

Uniqueness of the fixed point z obviously follows.

When p = q = 1, (1, 1)-quasi-contraction is Ćirić quasi-contraction and Theorem
2.2.2 is a consequence of Theorem 2.3.2.

Omitting positivity of operator A, we may state a new result in the case of normal
cone metric space.

Theorem 2.3.4. Let (X, d) be a complete cone metric space with a normal cone P and a
normal constant K. Let the mapping f : X 7→ X be a continuous (p, q)-quasi-contraction
of Perov type, K‖A‖ < 1 Then f has a unique fixed point in X and for any x ∈ X, the
iterative sequence (fn(x)) converges to the fixed point of f .

Proof. Assume that p ≥ q and for some x ∈ X define

η(x) =
∑

0≤i<j≤p

‖d(f i(x), f j(x))‖,

then

‖d(fn(x), fp(x))‖ ≤ K‖A‖
1−K‖A‖

η(x), n ≥ p. (2.34)
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Obviously, the inequality (2.34) is true for n = p. Suppose that (2.34) holds for any
n ≤ n0 − 1, n0 > p. If n = n0, then

d(fn0(x), fp(x)) � A(d(f i(x), f j(x))), (2.35)

where i, j ∈ {0, . . . , n0}. Few different cases will be discussed.
(1) If 0 ≤ i, j ≤ p, then

‖d(fn0(x), fp(x))‖ ≤ K‖A‖η(x) ≤ K‖A‖
1−K‖A‖

η(x).

(2) If p < i < n0 and j ≤ p (analogously i ≤ p, p < j < n0), then the induction
hypothesis and the triangle inequality imply

‖d(fn0(x), fp(x))‖ ≤ K2‖A‖2

1−K‖A‖
η(x) +K‖A‖η(x)

=
K‖A‖

1−K‖A‖
η(x).

(3) Consider p < i, j < n0. There exist i0, j0 < n0, i0 < p such that

‖d(f i(x), f j(x))‖ ≤ (K‖A‖)k‖d(f i0(x), f j0(x))‖

for some k ≥ 1. The inequality (2.34) is satisfied if i0 = j0. If j0 ≤ p, then

‖d(fn0(x), fp(x))‖ ≤ (K‖A‖)k+1η(x) ≤ K‖A‖
1−K‖A‖

η(x).

Otherwise,

‖d(fn0(x), fp(x))‖ ≤ (K‖A‖)k+1
(
‖d(f i0(x), fp(x))‖+ ‖d(fp(x), f j0(x))‖

)
≤ (K‖A‖)k+1

(
η(x) +

K‖A‖
1−K‖A‖

η(x)
)

≤ K‖A‖
1−K‖A‖

η(x),

because K‖A‖ < 1.

(4) Assume that i = n0. Inequality

‖d(fn0(x), fp(x))‖ ≤ K‖A‖‖d(fn0(x), fp(x))‖+K‖A‖‖d(fp(x), f j(x))‖,

leads to (2.34) when j ≤ p.
Otherwise, if p < j < n0, there exist some i0 ≤ j0 ≤ n0, i0 < p and k0 ≥ 1 for which

‖d(fn0(x), f j(x))‖ ≤ (K‖A‖)k0‖d(f i0(x), f j0(x))‖.

Evidently, for j0 ≤ p, (2.34) is fulfilled. Similarly as previously shown in the proof of
Theorem 2.3.2, (2.34) holds if j0 < n0 by the induction hypothesis.
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If j0 = n0, then again as in the proof of Theorem 2.3.3, there are some i1 ≤ j1 ≤ n0,
i1 < p and k1 ≥ 1 that satisfy ‖d(fp(x), fn0(x))‖ ≤ (K‖A‖)k1‖d(f i1(x), f j1(x))‖. Then

‖d(fn0(x), fp(x))‖ ≤ (K‖A‖)1+k0‖d(f i0(x), fp(x))‖+ (K‖A‖)1+k0+k1‖d(f i1(x), f j1(x))‖.

Again, if j1 < n0, (2.34) easily follows. If j1 = n0, then after m− 1 more steps, we get

‖d(fn0(x), fp(x))‖ ≤ (K‖A‖)1+k0‖d(f i0(x), fp(x))‖

+
i=m−1∑
l=1

(K‖A‖)1+k0+lk1‖d(f i1(x), fp(x))‖

+(K‖A‖)1+k0+mk1‖d(fp(x), fn0(x))‖.

Therefore the inequality (2.34) is satisfied in this case. Hence, (1)-(5) imply that the
inequality (2.34) holds for any n ≥ p.

Let n ≥ m > 2p, m = (k + 1)p + r, k ∈ N, 0 ≤ r < p. To estimate d(fn(x), fm(x)),
observe p ≤ in,m ≤ jn,m ≤ n and k ≥ 1 for which

‖d(fn(x), fm(x))‖ ≤ (K‖A‖)k‖d(f in,m(x), f jn,m(x))‖.

Then

‖d(fn(x), fm(x))‖ ≤ 2(K‖A‖)k+1

1−K‖A‖
η(x)

by (2.34). So, (fn(x)) is a Cauchy sequence, thus lim
n→∞

fn(x) = z for some z ∈ X. Since

f is a continuous, f(z) = z. Obviously, z is a unique fixed point of f in X because
K‖A‖ < 1.

As in the solid case, if p = 1 or q = 1, the continuity condition may be excluded.

Theorem 2.3.5. Let (X, d) be a complete cone metric space and P be a normal cone
with a normal constant K. Suppose that the mapping f : X 7→ X is a (p, 1)−quasi-
contraction of Perov type with K‖A‖ < 1. Then f has a unique fixed point in X and for
any x ∈ X, the iterative sequence (fn(x)) converges to the fixed point.

Proof. Let x be an arbitrary point in X. Then, as in the proof of Theorem 2.3.4, the
sequence (fn(x)) is a Cauchy sequence in the complete cone metric space X and so has
a limit z in X. For n > p, we now have d(fnx, f(z)) � A(un), where un belongs to the
set{
d(f rfn−p(x), f(z)), d(f rfn−p(x), z), d(f rfn−p(x), f r

′
fn−p(x)), d(z, f(z)) : 0 ≤ r, r′ ≤ p

}
.

But, recall that lim
n→∞

d(fn(x), z) = θ and lim
n,m→∞

d(fn(x), fm(x)) = θ. Since

d(z, f(z)) = lim
n→∞

d(fn(x), f(z)) � A(d(z, f(z)))

and P is a normal cone, therefore f(z) = z. Uniqueness goes analogously as in the
previous proof.
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Regarding the case p = q = 1, Theorem 2.2.6 is a consequence of this theorem on
normal cone metric spaces. It also includes Ćirić quasi-contraction result on metric space
due to the fact that metric space can be observed as normal cone metric space with a
normal constant K = 1.
In order to express the significance of presented theorems, we add an interesting example.

Example 8. Let E = CR([0, 1], ‖‖∞) and P = {f ∈ E : f(t) ≥ 0}. (X, ρ) a metric space
and d : X ×X 7→ E defined by d(x, y) = ρ(x, y)ϕ, where ϕ : [0, 1] 7→ R+ is continuous.
Then (X, d) is a normal cone metric space and the normal constant of P is equal to
K = 1.

To apply our results let us consider the solution of the equation (I −Q)x = b, where
b ∈ E is given, I,Q ∈ B(E) and ‖Q2−αQ‖ < 1−α, 0 < α < 1 (see Theorem 3 of [126]).
Let us take X = E, ρ(x, y) = ‖x− y‖, and define T : X 7→ X by T (x) = b+Q(x). Now,
it is easy to see that T is continuous. If xn, x0 ∈ X and xn → x0, that is d(xn, x0)→ 0,
then

‖d(T (xn), T (x0))‖ = ‖d(Q(xn), Q(x0))‖ ≤ ‖Q‖‖d(xn, x0)‖ → 0

Let us remark that T (T (x)) = b+Q(b) +Q2(x) , so T 2(x)− T 2(y) = Q2(x− y). Thus

T 2(x)− T 2(y) = Q2(x− y)

= (Q2 − αQ)(x− y) + (αQ)(x− y)

= (Q2 − αQ)(x− y) + (αT (x− y).

Hence,
‖T 2(x)− T 2(y)‖ ≤ ‖(Q2 − αQ)‖‖x− y‖+ |α|‖T (x− y)‖,

and
‖T 2(x)− T 2(y)‖ ≤ (‖(Q2 − αQ)‖+ α) max{‖x− y‖, ‖T (x− y)‖}.

It follows

‖T 2(x)− T 2(y)‖ϕ ≤ (‖(Q2 − αQ)‖+ α) max{‖x− y‖ϕ, ‖T (x− y)‖ϕ}.

Finally we have

d(T 2(x), T 2(y)) ≤ A(u),

where v ∈ {d(x, y), d(Tx, Ty)} and A ∈ B(E) is defined by A(v) = (‖(Q2− αQ)‖+ α)v,
v ∈ E.

Because 0 ≤ q = ‖(Q2−αQ)‖+α < 1 we can apply Theorem 2.3.4 to conclude that
there is a unique z ∈ E such that T (z) = z, i.e., (I −Q)z = b. Moreover, for any x ∈ X,
the iterative sequence (T nx) converges to the fixed point z

2.4 Fixed point theorems for w-cone distance

The notion of w-distance was introduced in 1996 by Kada, Suzuki and Takahashi ([80])
with indications that it is more general concept than metric. They gave examples of
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w-distance and improved Caristi’s fixed point theorem ([29]), Eklands variationals prin-
ciple ([50]) and the nonconvex minimization theorem according to Takahashi ([127]).
In [42], twenty years later, Ćirić, Lakzian and Rakočević generalized w-distance concept
to the tvs-cone metric space where the underlying cone is in topological vector space
instead of Banach space as in [67]. Therefore, they improved many results including [6],
[66], [104] and [112] and established some unsolved problems.

We extend and improve Theorem 2 of [80] and Theorem 1 of [125], and give an
estimation for a w−cone distance p(xn, z) of an approximate value xn and a fixed point
z.

Theorem 2.4.1. Let (X, d) be a complete cone metric space with w-cone distance p
on X. Suppose that for some increasing operator A ∈ B(E), r(A) < 1, a mapping
T : X → X satisfies the following condition:

p(Tx, T 2x) � A (p(x, Tx)) , for all x ∈ X. (2.36)

Assume that either of the following holds:

(i) If y 6= Ty, there exists c ∈ int(P ), c 6= θ, such that

c� p(x, y) + p(x, Tx), for all x ∈ X;

(ii) T is continuous.

Then, there exists z ∈ X, such that z = Tz and

p(T nx, z) � An (I − A)−1 (p(x, Tx)) , for n ∈ N, (2.37)

where z = lim
n→∞

T nx.

Moreover, if y = Ty for some y ∈ X, then p(y, y) = θ.

Proof. Let x ∈ X be arbitrary and define a sequence (xn) by x0 = x, xn = T nx, for any
n ∈ N. Then from (2.36) we have, for any n ∈ N,

p(xn, xn+1) = p(Txn−1, Txn)

� A(p(xn−1, xn)) � · · · � An(p(x, Tx)), (2.38)

since A is an increasing operator. Thus, if m > n, then from (w1) and (2.38),

p(xn, xm) �
m−1∑
i=n

p(xi, xi+1)

�
m−1∑
i=n

Ai(p(x, Tx))

�
∞∑
i=n

Ai(p(x, Tx))

= An(I − A)−1(p(x, Tx)). (2.39)
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However An(I −A)−1(p(x, Tx))→ θ, n→∞, so (xn) is a Cauchy sequence in X by
Lemma 1.2.6 and, because X is a complete, (xn) converges to some z ∈ X.

We will prove that z is a fixed point of T by estimating p(xn, z). Since xn → z, as
n→∞, from the lower semi-continuity of w distance, we have that for any ε� θ, there
is n0 ∈ N such that for any m ≥ n0

p(xn, z) � p(xn, xm) + ε.

Therefore, for an arbitrary n ∈ N, if we choose m > max{n, n0}, then, from (2.39), it
follows that the inequality

p(xn, z) � An(I − A)−1(p(x, Tx)) + ε

holds for any ε� θ, i.e., (2.37) holds for any n ∈ N.
Let us assume that (i) is satisfied and that Tz 6= z. Then, there exists c� θ, c 6= θ,

such that
c� p(x, z) + p(x, Tx), for all x ∈ X. (2.40)

Obviously, An(I − A)−1(p(x, Tx)) → θ and An(p(x, Tx)) → θ as n → ∞, so, from the
definition of convergence and (p5), there exists n1 ∈ N such that

An(I − A)−1(p(x, Tx))� c

3
and An(p(x, Tx))� c

3
,

for any n ≥ n1. The last observation contradicts to (2.40) since, for any n ≥ n1 inequal-
ities

c � p(xn, z) + p(xn, xn+1)

� An(I − A)−1(p(x, Tx)) + An(p(x, Tx))

� 2c

3
,

imply that −c/3 � 0, i.e., c = θ. But, we have already assumed that c 6= θ, hence
Tz = z in this case.

Otherwise, if T is a continuous, then, since xn+1 = Txn → Tz, n → ∞, by (i) of
Lemma, we may conclude that Tz = z.

It remains to prove that if Ty = y, then p(y, y) = θ. Obviously,

p(y, y) = p(Ty, T 2y) � A(p(y, Ty)).

The operator (I −A)−1 =
∞∑
n=0

An is an increasing linear operator and the last inequality

gives us p(y, y) � (I − A)−1(θ) = θ, i.e., p(y, y) = θ.

Example 9. Let X = E, where E and P are defined as in Example 4. Let us define
cone metric d : X ×X 7→ E for any f, g ∈ X by

d(f, g) =

{
f + g, f 6= g,

0, f = g.
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If T : X 7→ X is defined by T (f) = f/2, f ∈ X, then

d(Tf, T 2f) � A(d(f, Tf)), f ∈ X,

where A : E 7→ E, is a bounded linear operator defined by A(f) = f/2, f ∈ E.
Clearly, r(A) = ‖A‖ = 1/2 and T is a continuous, thus all the assumptions from

Theorem 2.4.1 are satisfied. Hence, T has a fixed point f = 0 ∈ X and it is evidently
an unique fixed point of T .

Corollary 2.4.2. Let (X, d) be a complete cone metric space with w−cone distance p
on X and A ∈ B(E) an increasing operator with spectral radius less than 1/2. Suppose
that the mapping T : X → X satisfies either (i) or (ii) of Theorem 2.4.1 and

p(Tx, T 2x) � A(p(x, T 2x)), for all x ∈ X.

Then, there exists z ∈ X, such that z = Tz and if y = Ty, then p(y, y) = θ.

Proof. If x ∈ X is arbitrary, then

p(Tx, T 2x) � A(p(x, T 2x)) � A(p(x, Tx) + p(Tx, T 2x)).

Hence,
p(Tx, T 2x) � A(I − A)−1(p(x, Tx)).

Observe that

r(A(I − A)−1) ≤ r(A)r
(
(I − A)−1

)
≤ r(A)

1− r(A)
< 1,

and the condition (2.36) is satisfied. All the conclusions of this corollary follows directly
from Theorem 2.4.1.

If T : X → X and F (T ) is a set of all fixed points of T , then T has a property P if
F (T ) = F (T n) for each n ∈ N. The following theorem extends and improves Theorem 2
of [6] and Theorem 12 of [42] for cone metric space.

Theorem 2.4.3. Let (X, d) be a complete cone metric space with w-cone distance p
on X. Suppose T : X → X satisfies the condition (2.36) for an increasing operator
A ∈ B(E). If r(A) < 1, then T has property P .

Proof. Obviously, F (T ) ⊆ F (T n), n ∈ N, so it remains to show that Tz = z for any
z ∈ F (T n) and arbitrary n > 1.

Remark that

p(T iz, T i+1z) = p(T kn+iz, T kn+i+1z) � Akn+i(p(z, Tz)), k, i ∈ N,

allows us to determine that, because Akn+i(p(z, Tz)) → 0, as k → ∞, when r(A) < 1,
p(T iz, T i+1z) = θ, i ∈ N, and, furthermore, Tz = T nz = z.
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Instead of observing contractive conditions on X, we observe only T -orbit O(x,∞)
of an arbitrary element x ∈ X where O(x,∞) = {T nx | n ∈ N0}.
Function G : X → P is a T -orbitally lower semi-continuous at x if for any ε� θ, there
is n0 ∈ N such that (1.2) holds whenever (xn) ⊆ O(x;∞) and xn → x, n→∞.

The following theorems implies some results of [66], [104], [67] and [112].

Theorem 2.4.4. Let (X, d) be a complete cone metric space with w-cone distance p on
X and A ∈ B(E) an increasing operator with spectral radius less than 1. Suppose that
T : X → X and there exists an x ∈ X such that

p(Ty, T 2y) � A(p(y, Ty)), for all y ∈ O(x,∞).

Then,

(i) lim
n→∞

T nx = z exists and

p(T nx, z) � An(I − A)−1 (p(x, Tx)) , n ∈ N;

(ii) p(z, Tz) = θ if and only if G(x) = p(x, Tx) is T -orbitally lower semi-continuous
at z.

Proof. (i) First observation easily follows from the proof of Theorem 2.4.1.

(ii) If p(z, Tz) = θ then G is obviously T -orbitally lower semi-continuous at z. Oth-
erwise, choose ε� θ arbitrary. There exists n1 ∈ N such that

An (p(x, Tx))� ε

2

for any n ≥ n1, and n2 ∈ N such that

G(z) � G(T nx) +
ε

2
, n ≥ n2.

Then, for n ≥ max{n1, n2},

p(z, Tz) � p(T nx, T n+1x) +
ε

2

� An(p(z, Tx)) +
ε

2
� ε.

The last inequality holds for any ε� θ, and by (p2), p(z, Tz) = θ.

Theorem 2.4.5. Let (X, d) be a complete cone metric space with w-cone distance p on
X and A ∈ B(E) an increasing operator with spectral radius less than 1. Suppose that
T : X → X is a p-contractive mapping of Perov type, i.e.,

p(Tx, Ty) � A (p(x, y)) , for all x, y ∈ X.

Then, T has a unique fixed point z ∈ X, and p(z, z) = θ.



2.4. Fixed point theorems for w-cone distance 43

Proof. From the proof of Theorem 2.4.1 we get that T nx → z as n → ∞, Tz = z and
p(z, z) = θ.

If Ty = y, then

p(y, z) = p(Ty, Tz) � A(p(y, z)) =⇒ p(y, z) � (I − A)−1(θ) = θ,

thus p(y, z) = θ and p(z, z) = θ imply, by (i) of Lemma 1.2.6, that y = z.

Remark 2.4.6. De Pascale and De Pascale [103] used K-normed space to prove that
Lou’s fixed point theorem [93] in a space of continuous functions is equivalent to the Ba-
nach contraction principle with contractive constant replaced by bounded linear operator
with spectral radius < 1. Observe that in [103] cone is normal, but we have investigated
the case when cone is not normal [33]. It is interesting to to investigate possibility of
extending Lou’s theorem in the case when cone is not normal.

We state the similar results when cone metric space (X, d) is normal by replacing the
condition r(A) < 1 and excluding the condition that the operator A is increasing, i.e.,
not demanding the condition A(P ) ⊆ P .

Theorem 2.4.7. Let (X, d) be a complete normal cone metric space with normal constant
K and w-cone distance p on X. Suppose that for some operator A ∈ B(E), K‖A‖ < 1,
a mapping T : X → X satisfies the following condition:

p(Tx, T 2x) � A (p(x, Tx)) , for all x ∈ X.

Assume that either of the following holds:

(i) If y 6= Ty, there exists c > 0, such that

c < ‖p(x, y)‖+ ‖p(x, Tx)‖, for all x ∈ X;

(ii) T is continuous.

Then, there exists z ∈ X, such that z = Tz and if y = Ty for some y ∈ X, then
p(y, y) = θ.

Proof. Let x ∈ X be an arbitrary and let us define a sequence (xn), x0 = x, xn = T nx,
for any n ∈ N . Then,

‖p(xn, xn+1)‖ ≤ K‖A‖‖p(xn−1, xn)‖ ≤ · · · ≤ (K‖A‖)n‖p(x, Tx)‖. (2.41)

Thus, if m > n, then from (w1) and (2.38),

‖p(xn, xm)‖ ≤
m−1∑
i=n

(K‖A)i‖p(x, Tx)‖

≤
∞∑
i=n

(K‖A‖)i‖p(x, Tx)‖

=
(K‖A‖)n

1−K‖A‖
‖p(x, Tx)‖. (2.42)
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However,
(K‖A‖)n

1−K‖A‖
‖p(x, Tx)‖ → 0, n→∞,

so (xn) is a Cauchy sequence in X and, because X is complete, (xn) converges to some
z ∈ X.

From the lower semi-continuity of w distance, we have that for any ε � θ, there is
n0 ∈ N such that for any m ≥ n0

p(xn, z) � p(xn, xm) + ε.

Moreover, for arbitrary n ∈ N, if we choose m > n, then from (2.42) it follows that the
inequality

‖p(xn, z)‖ ≤
(K‖A‖)n

1−K‖A‖
‖p(x, Tx)‖+K‖ε‖

holds for any ε� θ, so, for ε := ε/n, n ∈ N,

‖p(xn, z)‖ ≤
(K‖A‖)n

1−K‖A‖
‖p(x, Tx)‖.

Let us assume that (i) is satisfied and that Tz 6= z. Then, there exists c > 0 such that

c < ‖p(x, z)‖+ ‖p(x, Tx)‖, for all x ∈ X. (2.43)

Then,

c <
(K‖A‖)n

1−K‖A‖
‖p(x, Tx)‖+ (K‖A‖)n‖p(x, Tx)‖

for any n ∈ N and that is impossible since (2.43) holds.
Otherwise, if T is continuous, then, since xn+1 = Txn → Tz, n → ∞, it follows

Tz = z.
It remains to prove that if Ty = y, then p(y, y) = θ. Obviously,

‖p(y, y)‖ = ‖p(T ny, T n+1y)‖ ≤ (K‖A‖)n‖p(y, Ty)‖, n ∈ N,

implies ‖p(y, y)‖ = 0.

Corollary 2.4.8. Let (X, d) be a complete normal cone metric space with normal con-
stant K, w-cone distance p on X and A ∈ B(E) an operator, K‖A‖ < 1/2. Suppose
that the mapping T : X → X satisfies either (i) or (ii) of Theorem 2.4.1 and

p(Tx, T 2x) � A(p(x, T 2x)), for all x ∈ X.

Then, there exists z ∈ X, such that z = Tz and if y = Ty, then p(y, y) = θ.

Proof. If x ∈ X is arbitrary, then

‖p(Tx, T 2x)‖ ≤ K‖A‖‖p(x, Tx)‖+K‖A‖‖p(Tx, T 2x)‖.

Hence,

‖p(Tx, T 2x)‖ ≤ K‖A‖
1−K‖A‖

‖p(x, Tx) .

and, since K‖A‖/(1−K‖A‖) < 1 it directly follows by Theorem 2.4.7.
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Theorem 2.4.9. Let (X, d) be a complete normal cone metric space with normal constant
K and w-cone distance p on X. Suppose T : X → X satisfies the condition (2.36) for
an operator A ∈ B(E). If K‖A‖ < 1, then T has property P .

Proof. As in the proof of previously stated theorem, it follows that, for any z ∈ F (T n)
and i ∈ N,

‖p(T iz, T i+1z)‖ ≤ (K‖A‖)kn+i‖p(z, Tz)‖ → 0, k →∞,

thus Tz = T nz = z.

The proofs of the following theorems follows similarly as in the case when cone metric
space is not normal.

Theorem 2.4.10. Let (X, d) be a complete normal cone metric space with normal con-
stant K, w-cone distance p on X, A ∈ B(E) an operator such that K‖A‖ < 1. Suppose
T : X → X and there exists an x ∈ X such that

p(Ty, T 2y) � A(p(y, Ty)), for all y ∈ O(x,∞).

Then,
(i) lim

n→∞
T nx = z exists and

‖p(T nx, z)‖ ≤ (K‖A‖)n

1−K‖A‖
‖p(x, Tx)‖ for n ∈ N;

(ii) p(z, Tz) = θ if and only if G(x) = p(x, Tx) is T -orbitally lower semi-continuous
at z.

Theorem 2.4.11. Let (X, d) be a complete normal cone metric space with normal con-
stant K and w-cone distance p on X and A ∈ B(E) an with such that K‖A‖ < 1.
Suppose that T : X → X is a p-contractive mapping of Perov type, i.e.,

p(Tx, Ty) � A (p(x, y)) , for all x, y ∈ X.

Then, T has a unique fixed point z ∈ X, and p(z, z) = θ.

2.5 Perov type theorems on partially ordered cone

metric space

A. C. Ran and M. C. Reurings in [114] gave a fixed point theorem regarding contrac-
tions on partially ordered metric spaces but with contractive condition holding for only
comparable element additionally assuming that a mapping is monotone. There were
many extensions of this result concerning different type of spaces with partial order and
extended contractive condition. There were many papers on the topic of fixed point in
partially ordered cone metric spaces, but most of them in the case when underlying cone
is normal. We investigate existence of a fixed point of a Perov type contraction but in
partially ordered cone metric spaces.
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Theorem 2.5.1. ([114]) Let (X,�) be a partially ordered set such that every pair x, y ∈
X has a lower bound and an upper bound. Furthermore, let d be a metric on X such
that (X, d) is a complete metric space. If f : X 7→ X is a continuous and monotone
mapping such that

(i) (∃ 0 < c < 1) d(f(x), f(y)) ≤ cd(x, y), for all x � y,

(ii) (∃x0 ∈ X)x0 � f(x0) or x0 � f(x0),

then f has a unique fixed point z. Moreover, for every x ∈ X, lim
n→∞

fn(x) = z.

Since there were defined two structures, ordering and metric, on a set X, their com-
patibility should be discussed, as mentioned in [107]. Nevertheless compatibility easily
follows from the condition (i), in the following, when dealing with partially ordered met-
ric and partially ordered cone metric spaces, assume that defined metric, or cone metric,
and ordering are compatible.

In [107] was stated the following result concerning existence of at least one fixed
point, regardless uniqueness, by excluding condition of existence of a lower and an upper
bound of any pair of points.

Theorem 2.5.2. ([107]) Let (X,�) be a partially ordered set, let d be a metric on X
such that (X, d) is a complete metric space and the metric and ordered structure are
compatible. Let f : X 7→ X is a continuous and monotone mapping such that

(i) (∃ 0 < c < 1) d(f(x), f(y)) ≤ cd(x, y), for all x � y,

(ii) (∃x0 ∈ X)x0 � f(x0) or x0 � f(x0),

then f has a fixed point z ∈ X and for each x ∈ X with x � x0 (or x � x0), the sequence
(fn(x)) of successive approximations of f starting from x converges to z.

Instead of cone metric space, we will investigate uniqueness and existence of a fixed
point for Perov type contractions on partially ordered cone metric space assuming that
contractive condition holds only for comparable points.
For a partially ordered cone metric space (X, d,�) we say that ordering and cone metric
are compatible if for any sequences (xn), (yn) ⊆ X convergent in X such that xn � yn,
n ∈ N, it follows lim

n→∞
xn � lim

n→∞
yn.

Points x, y ∈ X are called comparable if x � y or y � x and set of all comparable points
of X will be denoted with x�.

Definition 2.5.3. Let (X, d,�) be a partially ordered cone metric space. A mapping
f : X 7→ X is continuous if

(∀ (xn) ⊆ X)xn → x ∈ X, n→∞ =⇒ f(xn)→ f(x), n→∞.

Let O(x, f) = {fn(x) | n ∈ N0} be the orbit of point x for a mapping f .
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Definition 2.5.4. Let (X, d,�) be a partially ordered cone metric space. A mapping
f : X 7→ X is orbitally continuous if

(∀x ∈ X)(∀ (xn) ⊆ O(x, f))xn → y ∈ X, n→∞ =⇒ f(xn)→ f(y), n→∞,

or, equivalently,

(∀x ∈ X) fn(i)(x)→ y ∈ X, i→∞ =⇒ fn(i)+1(x)→ f(y), i→∞,

Definition 2.5.5. Let (X, d,≤) be a partially ordered cone metric space. A mapping
f : X 7→ X is:

(i) monotonically nondecreasing (order preserving) if x � y =⇒ f(x) � f(y), x, y ∈
X;

(ii) monotonically nonincreasing (order reversing) if x � y =⇒ f(x) � f(y), x, y ∈ X.

A mapping f is monotone if it is monotonically nondecreasing or nonincreasing map on
X.

Theorem 2.5.6. Let (X, d,�) be a partially ordered complete cone metric space with a
solid cone P . If for a monotone and continuous mapping f : X 7→ X there exists x0 ∈ X
such that

x0 � f(x0) or x0 � f(x0), (2.44)

and an positive operator A ∈ B(E), r(A) < 1, satisfying

d(f(x), f(y)) ≤ A(d(x, y)), for all x � y, (2.45)

then f has a fixed point z. Moreover, for every x ∈ X such that x � x0 or x � x0, the
sequence of successive approximations {fn(x)} converges to z.

Proof. Choose x0 as defined in (2.44) and observe a sequence of successive approxi-
mations xn = f(xn−1), n ∈ N. Let us assume that f is monotonically nondecreasing
mapping. The rest of the proof would go analogously in the other case. Remark that,
thanks to the symmetry of the condition (2.45), it is applicable on any two comparable
points x, y ∈ X.
If x0 � f(x0) or x0 � f(x0), then, by using monotonicity of the mapping f and principle
of mathematical induction, we derive xn � xn+1 or, respectively, xn � xn+1, for any
n ∈ N. Since A is an positive operator,

d(xn, xn+1) ≤ A(d(xn−1, xn)) ≤ . . . ≤ An(d(x0, x1)),

along with triangle inequality, implies

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1)

≤
m−1∑
i=n

Ai (d(x0, x1))

≤
∞∑
i=n

Ai (d(x0, x1)) .
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As previously discussed,
∞∑
i=1

Ai converges, thus lim
n→∞

∞∑
i=n

Ai (d(x0, x1)) = θ and (xn) is a

Cauchy sequence, so convergent in X. If z = lim
n→∞

xn, because f is continuous, then z is

a fixed point of f , not necessarily unique.
If x ∈ X is comparable with x0, then since f is monotone, fn(x) and xn are comparable,
n ∈ N, so by (2.45),

d(fn(x), xn) ≤ A(fn−1x, xn−1) ≤ . . . ≤ An (d(x, x0)) .

Moreover,

d(fn(x), z) ≤ d(fn(x), xn) + d(xn, z) ≤ An (d(x, x0)) + d(xn, z).

For any c� 0 there exists n0 ∈ N chosen that the inequalities

d(xn, z)�
c

2
and An (d(x, x0))�

c

2
,

hold for any n ≥ n0.
Hence,

d(fn(x), z) ≤ c, n ≥ n0

and arbitrariness of c ∈ int(P ), lead to the conclusion lim
n→∞

fn(x) = z.

We can state the similar result in the sense of Ran and Reurings, by including the
hypothesis that each pair of points has an upper and a lower bound and obtain unique-
ness.

Theorem 2.5.7. Let (X, d,≤) be a partially ordered complete cone metric space such
that for any x, y ∈ X the set {x, y} has a lower and an upper bound. If for a monotone
and continuous mapping f : X 7→ X (2.44) and (2.45) hold for some x0 ∈ X and some
positive operator A ∈ B(E) with r(A) < 1, then f has a unique fixed point z. Moreover,
for every x ∈ X, the sequence of successive approximations {fn(x)} converges to z.

Proof. From the proof of Theorem 2.5.6, an fixed point z of f is obtained and lim
n→∞

fn(x) =

z for any x � x0 or x � x0.
For arbitrary x ∈ X denote with xl a lower and with a xu an upper bound of a set
{x, x0}. Then,

fn(xl) � fn(x) � fn(xu) or fn(xl) � fn(x) � fn(xu), n ∈ N.

However,

d(fn(x), z) ≤ d(fn(x), fn(xl)) + d(fn(xl), z)

≤ An(d(x, xl) + d(fn(xl), z).

As n→∞, we obtain lim
n→∞

d(fn(x), z) = 0, thus lim
n→∞

fn(x) = z. Assume that f(y) = y,

for some y inX. Due to the previously made observations the sequence {fn(y)} converges
to z and since it is a constant sequence, y = z.
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Remark 2.5.8. By observing the proof of Theorem 2.5.7, it is evident that there is no
need to request existence of both lower and upper bound. It is sufficient to ask that for
any x, y ∈ X there exists z(x, y) ∈ X comparable with x and y. Since than, for y = x0
and z(x, x0) = z, lim

n→∞
fn(z) = z, fn(z) and fn(x) are comparable for any n ∈ N and

d(fn(x), z) ≤ d(fn(x), fn(z)) + d(fn(z), z)

≤ An(d(x, z) + d(fn(xl), z),

lead to the same conclusion lim
n→∞

fn(x) = z.

Remark 2.5.9. Theorem 2.5.1 ([114]) is a direct consequence of the Theorem 2.5.7 and
Theorem 2.5.2 ([107]) follows from the Theorem 2.5.6 by observing a metric space as a
specially kind of cone metric space with a cone P = (0,∞) and an operator A ∈ B(R)
defined with A(x) = cx, x ∈ R. Remark that A is a positive operator since c > 0 and
that r(A) = c < 1, so all additional conditions of Theorems 2.5.6 and 2.5.7 are fulfilled.

By taking into the account the proofs of the Theorem 2.5.6 and Theorem 2.5.7, it
is easy to conclude that continuity of function f could be replaced with the orbital
continuity.

Theorem 2.5.10. Let (X, d,≤) be a partially ordered complete cone metric space with a
solid cone P . If for a monotone and orbitally continuous continuous mapping f : X 7→ X
such that (2.44) and (2.45) hold for some x0 ∈ X and some positive operator A ∈ B(E)
with r(A) < 1, then f has a fixed point z. Moreover, for every x ∈ X such that x � x0
or x � x0, the sequence of successive approximations (fn(x)) converges to z.

Theorem 2.5.11. Let (X, d,≤) be a partially ordered complete cone metric space with
a solid cone such that for any x, y ∈ X exists some z(x, y) ∈ X comparable with both x
and y. If for a monotone and orbitally continuous mapping f : X 7→ X such that (2.44)
and (2.45) hold for some x0 ∈ X and some positive operator A ∈ B(E) with r(A) < 1,
then f has a unique fixed point z. Moreover, for every x ∈ X, the sequence of successive
approximations (fn(x)) converges to z.

Another way of weakening the conditions of previous theorems would be to, instead
of monotonicity of a mapping f , require that for any to comparable points x, y ∈ X,
f(x) and f(y) are also comparable.

Theorem 2.5.12. Let (X, d,≤) be a partially ordered complete cone metric space with
a solid cone P . If for a orbitally continuous continuous mapping f : X 7→ X such that

(x ≤ y or y ≤ x) =⇒ (f(x) ≤ f(y) or f(y) ≤ f(x)) , (2.46)

(2.44) and (2.45) hold for some x0 ∈ X and some positive operator A ∈ B(E) with
r(A) < 1, then f has a fixed point z. Moreover, for every x ∈ X such that x � x0 or
x � x0, the sequence of successive approximations (fn(x)) converges to z.
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Theorem 2.5.13. Let (X, d,≤) be a partially ordered complete cone metric space such
that for any x, y ∈ X the set {x, y} exists some z(x, y) ∈ X comparable with both x and
y. If for orbitally continuous mapping f : X 7→ X such that (2.46) is satisfied, (2.44)
and (2.45) hold for some x0 ∈ X and some positive operator A ∈ B(E) with r(A) < 1,
then f has a unique fixed point z. Moreover, for every x ∈ X, the sequence of successive
approximations (fn(x)) converges to z.

Theorem 2.5.12 generalizes Theorem 4.7 of [107] and it do not require existence of
a lower and an upper bound for any pair of points since comparability requirement in
Theorem 2.5.12 is equivalent with existence one of the bounds, lower or upper.

In correlation with some results of J.J. Nieto and R. Rodriguez-Lopez ([96, 97]), we
will prove that, instead of continuity or spherical continuity condition, we can observe
the sequence oriented condition:
(C1) If (xn) ⊆ X is a convergent sequence with comparable consecutive terms in respect
with � and lim

n→∞
xn = x, then there exists a subsequence {xnk

} ⊆ (xn) whose every term

is comparable with the limit x.

Theorem 2.5.14. Let (X, d,≤) be a partially ordered complete cone metric space with
a solid cone P with (C1) property, a mapping f : X 7→ X such that (2.46) is satisfied,
(2.44) and (2.45) hold for some x0 ∈ X and some positive operator A ∈ B(E) with
r(A) < 1, then f has a fixed point z. Moreover, for every x ∈ X such that x � x0 or
x � x0, the sequence of successive approximations (fn(x)) converges to z.

Proof. Define an iterative sequence (xn) of f for x0 ∈ X which satisfies (2.45) providing
that xn and xn+1 are comparable because of (2.46). By applying (2.45) for any n ∈ N,
following inequalities are obtained:

d(xn, xn+1) ≤ An(d(x0, x1)),

and, for any n,m ∈ N with m ≥ n,

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1)

≤
m−1∑
i=n

Ai (d(x0, x1))

≤
∞∑
i=n

Ai (d(x0, x1)) .

Since lim
n→∞

∞∑
i=n

Ai (d(x0, x1)) = 0, (xn) is a Cauchy and convergent sequence in X. If

z = lim
n→∞

xn, it remains to prove that f(z) = z by estimating d(z, f(z)).

Due to (C1), the sequence (xn) generates the subsequence (xnk
) whose every term is

comparable with z. For some c� θ, let k0 ∈ N satisfies

d(z, xn) ≤ c, n ≥ nk0 ,
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and for such k,

d(z, f(z)) ≤ d(z, xnk+1) + d(xnk+1, f(z)

≤ d(z, xnk+1) + A (d(xnk
, z))

≤ c+ A(c).

According to previously made discussion, d(z, f(z)) = 0, i.e., f(z) = z.
Proof that iterative sequence of any point comparable with x0 converges to z follows the
lines of the proof of Theorem 2.5.6.

Theorem 2.5.14 generalizes Theorems 4, 5 and 7 of [96] by choosing A(x) = qx, x ∈ R,
for some q ∈ (0, 1), by adding the comparability request which guarantees a uniqueness
of a fixed point.

The condition (C1) could be replaced with:
(C2) If a nondecreasing sequence (xn) ⊆ X converges to x ∈ X, then xn ≤ x for any
n ∈ N.
or with
(C3) If a nonincreasing sequence (xn) ⊆ X converges to x ∈ X, then xn ≥ x for any
n ∈ N.
by adjusting some other requirements.

Theorem 2.5.15. Let (X, d,≤) be a partially ordered complete cone metric space with
a solid cone P with (C2) property and f : X 7→ X a nondecreasing mapping such that
(2.45) holds for some positive operator A ∈ B(E) with r(A) < 1. If x0 � f(x0) for some
x0 ∈ X, then f has a fixed point z ∈ X and for every x ∈ X such that x � x0 or x � x0,
the sequence of successive approximations {fn(x)} converges to z.

Proof. According to monotonicity of f , xn � xn+1 for xn = fn(x0), , n ∈ N and as in
previous proofs, (xn) is a Cauchy and, thus convergent sequence with a limit z in X.
Condition (C2) allows us to make following estimation by applying (2.45)

d(z, f(z)) ≤ d(z, xn+1) + A(d(xn, z)), n ∈ N

and to conclude f(z) = z. Rest of the proof regarding iterative sequence’s convergence
is analogous to the proof of Theorem 2.5.6.

Including (C3) instead of (C2) leads to the following result.

Theorem 2.5.16. Let (X, d,≤) be a partially ordered complete cone metric space with
a solid cone P with (C3) property and f : X 7→ X a nondecreasing mapping such that
(2.45) holds for some positive operator A ∈ B(E) with r(A) < 1. If x0 � f(x0) for some
x0 ∈ X, then f has a fixed point z ∈ X and for every x ∈ X such that x � x0 or x � x0,
the sequence of successive approximations {fn(x)} converges to z.

Proof. The proof is similar to the proof of Theorem 2.5.15 but includes a nonincreasing
sequence of successive approximations (xn) for xn = fn(x0), n ∈ N.

Theorem 2.5.15 extends Theorem 2.2 and Theorem 2.5.16 Theorem 2.4 of [97]. In
those results sequence of successive approximations is not discussed. As previously men-
tioned uniqueness can be obtained by including comparability condition for each pair of
points in X.
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2.6 Nonlinear operatorial contractions

Operator A satisfying (2.1) is required to be bounded, linear and with spectral radius
less than 1, thus An converges to zero, as n → ∞, to obtain existence and uniqueness
of a fixed point of mapping f . In the following results we will weaken this requirements
primarily omitting the linearity condition.

Theorem 2.6.1. Let (X, d) be complete cone metric space with a solid cone P and
f : X 7→ X a continuous mapping. If there exists an increasing operator A : E 7→ E
such that lim

n→∞
An(e) = θ, e ∈ E, and, for any x, y ∈ X,

d(f(x), f(y)) � A(d(x, y)), (2.47)

then a mapping f has a unique fixed point in X.

Proof. Define, for arbitrary x0 ∈ X, an iterative sequence xn = f(xn−1), n ∈ N. Then,

θ � d(xn, xn+1) � An(d(x0, x1)), n ∈ N,

so lim
n→∞

d(xn, xn+1) = θ.

For arbitrary c � θ choose n0 ∈ N such that An(c) � c
8
, n ≥ n0, and n1 ∈ N that

d(xn, xn+1) ≺ c
8n0

for n ≥ n1n0. Observe a sequence yk = fkn0(x), k ∈ N. Then

d(yk, yk+1) � Akn0(d(x0, xn0)), k ∈ N,

and again lim
n→∞

d(yk, yk+1) = θ. Hence, there exists k0 ∈ N such that d(yk, yk+1) ≺ c
8

holds also for any index greater than k0 and choose such k ≥ n1.
Denote with S a closed ball K[yk,

c
4
] = {x ∈ X | d(yk, x) � c

4
}. It follows that fn0(S) ⊆ S

since, for any x ∈ S,

d(yk, f
n0(x)) � d(yk, yk+1) + d(yk+1, f

n0(x))

� c

8
+ An0(d(yk, x))

≺ c

4
.

Moreover, yn ∈ S for any n ≥ k.
If m ≥ kn0, let m = qn0 + r for some q ≥ k and 0 ≤ r < n0, then the inequalities

d(yk, xm) � d(yk, yq) + d(yq, xm)

� d(yk, yq) +
m−1∑
i=qn0

d(xi, xi+1)

� c

4
+

m−1∑
i=qn0

c

8n0

� 3c

8
,
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lead to

d(xn, xm) � d(xn, yk) + d(yk, xm) � 3c

4
≺ c, n,m ≥ kn0,

with a conclusion that (xn) is a Cauchy sequence in X and therefore convergent in
X. Denote with z ∈ X the limit of the sequence (xn) and notice that z, along with
fmn0(z) for any m ∈ N is in S. Since the mapping f is continuous, z = lim

n→∞
fn+1(x0) =

f( lim
n→∞

fn(x0)) = f(z).

If f(u) = u, then
d(z, u) = d(fn(z), fn(u)) � An(z, u),

along with lim
n→∞

An(z, u) = θ gives us u = z. Uniqueness also implies that (fn(x))

converges to z for any x ∈ X since first part of the proof induces that (fn(x)) converges
to the point with fixed point property.

Remark 2.6.2. Comparing this theorem with Theorem 2.2.2, notice that A is not
assumed to be linear. Continuity condition of f is implicitly requested in Perov theorem
and Theorem 2.2.2. If r(A) < 1, then lim

n→∞
‖An‖1/n = 0, moreover lim

n→∞
‖An(e)‖1/n = 0,

for any e ∈ E. Hence, this result generalizes theorem 2.2.2 and, as a consequence, Perov
theorem.

Instead of requesting that lim
n→∞

An(e) = θ, for any e ∈ E, it is enough to assume that

for all e ∈ P .

Theorem 2.6.3. Let (X, d) be complete cone metric space with a solid cone P and
f : X 7→ X a continuous mapping. If there exists an increasing operator A : E 7→ E
such that lim

n→∞
An(e) = θ, e ∈ P , and (2.47) holds for any x, y ∈ X, then a mapping f

has a unique fixed point in X.

It is also possible to let A �P : P 7→ P be an increasing operator instead of A : E 7→ E.

In the case that A ∈ B(E), it is equivalent for A to be increasing or positive. Bound-
edness do not have impact on this conclusion, only linearity. If A is a non linear op-
erator, but increasing and satisfies (2.47), then for x = y, θ � A(θ) and for x ∈ P ,
θ � A(θ) � A(x) ∈ P , so A is a positive operator. On the other hand, positivity of A
do not imply that A is increasing.

Example 10. Let E be a Banach space with a solid cone P and c ∈ int(P ). Define an
operator A : E 7→ E with

A(x) =

{
c
2
, x = θ
θ, x ∈ E \ {θ} .

Operator A is positive and An(x) = θ, x ∈ E, for any n ≥ 2, but it is not increasing.

Comparing requirements r(A) < 1 and lim
n→∞

An(e) = θ, e ∈ E, for a bounded linear

operator A, it is obvious that r(A) < 1 implies other condition, but reverse do not hold.
Therefore, the condition lim

n→∞
An(e) = θ, e ∈ E, (or e ∈ P ) of Theorem 2.6.3 is less strict

that corresponding condition of Theorem 2.2.2.
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Example 11. Let c0 be the set containing all sequences of real numbers convergent to
zero equipped with supremum norm ‖‖∞ and define A : E 7→ E with

A(x) = A(x1, x2, x3, . . . , xn, . . .) = (0, x3, x4, . . . , xn+1, . . .), x = (xn) ∈ c0.

Operator A is linear on Banach space (c0, ‖‖∞) and also bounded since ‖Ax‖∞ ≤ ‖x‖∞.
By choosing e3 = (0, 0, 1, 0, . . . , 0, . . .) ∈ c0, it follows ‖A‖ = 1.
For any m ∈ N,

Am(x) = Am(x1, x2, x3, . . .) = (0, xm+2, xm+3, . . .), x = (xn) ∈ c0,

therefore, observing em+2 ∈ c0 with all zeros except one on (m+2)-nd place (i.e.,
(em+2)n = δn,m+2, n ∈ N), we obtain ‖Am‖ = 1. Spectral radius of A is not less

than 1, since r(A) = lim
m→∞

‖Am‖ 1
m = 1.

However, for any x ∈ c0, lim
m→∞

Am(x) = θ where θ is a zero sequence. For arbitrary

x ∈ c0 and ε ≥ 0, there exists n0 ∈ N such that

n ≥ n0 =⇒ |xn| <
ε

2
,

implying ‖Am(x)‖∞ = sup
n≥m+2

|xn| < ε for any m ≥ n0−2. Thus, lim
m→∞

Am(x) = θ despite

of spectral radius.



Chapter 3

Common fixed point problems

Common fixed point problem refers to finding x ∈ X such that it is a coincidence point
for two self-mappings and, at the same time, fixed point of both of them. Meaning, for
some f, g : X 7→ X, we look for such x ∈ X that f(x) = g(x) = x and we say that x
is a common fixed point of mappings f and g. Evidently, common fixed point even do
not have to exist at all and, if it does exist, it is not necessarily unique as shown in the
example.

Example 12. Let f(x) = x, g(x) = x+1, x ∈ R, then common fixed point do not exist,
but there is also no coincidence point for those two mappings.

If f(x) = g(x) = x+ 1, x ∈ R, then all real numbers are coincidence points, but still
there is no common fixed point.

If f(x) = x, g(x) = x
2
, x ∈ R, then x=0 is a unique fixed point for f and g.

Every real number is a common fixed point for f(x) = g(x) = x, x ∈ R.
Observe that, in a similar way, we may define this kind of examples on a cone metric

space.

We have emphasised coincidence point problem since it is broadly researched topic
in the fixed point theory.

Mean value of coupled fixed point problem is in wide area of application, especially
in finding a solution of a system of two equations. This concept can be extended on a
sequence or family of mappings. Therefore, this chapter is divided in three sections. Two
sections summarize existence and uniqueness of a common fixed point for the pair or the
sequence of mappings, respectively. In the third part of this chapter classical result of
Hardy and Rogers ([64]) is transformed from the angle of common fixed point problem.

3.1 Fixed point for the pair of mappings

Instead of starting with Banach/Perov contraction, we will, relying on Section 2.2, begin
from the much comprehensive condition.

Definition 3.1.1. Let (X, d) be a cone metric space, and let g, f : X 7→ X. Then, g is
called a f - quasi-contraction of Perov type if for some operator A ∈ B(E), r(A) < 1 and

55
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for every x, y ∈ X, there exists

u ∈ C(f ;x, y) ≡
{
d(f(x), f(y)), d(f(x), g(x)), d(f(x), g(y)), d(f(y), g(y)), d(f(y), g(x))

}
such that

d(g(x), g(y)) � A(u). (3.1)

Remark that if f = idX is the identity map on X, and g satisfies (3.1), than g is called
quasi-contraction of Perov type. If f, g : X 7→ X, g(X) ⊆ f(X) and x0 ∈ X arbitrary,

then let x1 ∈ X be such that g(x0) = f(x1). Having defined xn ∈ X, let xn+1 ∈ X be
such that g(xn) = f(xn+1) = yn, n ∈ N.

Theorem 3.1.2. Let (X, d) be a complete cone metric space with a solid cone P . Let
g, f : X 7→ X, f commutes with g, g(X) ⊆ f(X), f or g is continuous and g is a
f -quasi-contraction of Perov type, A(P ) ⊆ P . Then f and g have a unique common
fixed point z in X and for any x0 ∈ X, the iterative sequence (yn)n∈N converges to some
y ∈ X. In the case when f is continuous, then z = g(y) = f(y), if g is continuous, then
z = y.

Proof. Let x0 ∈ X be arbitrary. We will prove two inequalities:

(i) d(yn, y1) � (I − A)−1A(d(y1, y0)), n ∈ N,

(ii) d(yn, y0) � (I − A)−1(d(y1, y0)), n ∈ N.

Evidently, (1) is true for n = 1. Suppose that it is fulfilled for each m ≤ n.
Since d(yn+1, y1) � A(u), where

u ∈ {d(yn, y0), d(yn, y1), d(y0, y1), d(y0, yn+1), d(yn, yn+1)},

we will discuss several different cases.
(1) If u = d(yn, y0), then

d(yn+1, y1) � A(d(yn, y0))

� A(d(yn, y1)) + A(d(y1, y0))

� A(I − A)−1A(d(y1, y0)) + A(d(y1, y0))

= A2(I − A)−1(d(y1, y0)) + A(I − A)(I − A)−1(d(y1, y0))

= (I − A)−1A(d(y1, y0)).

(2) Presume u = d(yn, y1), then

d(yn+1, y1) � A(d(yn, y1))

� A(I − A)−1A(d(y1, y0))

� (I − (I − A))(I − A)−1A(d(y1, y0))

� (I − A)−1A(d(y1, y0)).
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(3) Clearly, for u = d(y1, y0), the inequality (1) is satisfied.
(4) Due to

d(y0, yn+1) � d(y0, y1) + d(y1, yn+1),

and the fact that A is positive operator, it follows

d(yn+1, y1) � A(d(y0, y1)) + A(d(y1, yn+1)),

that points to
d(yn+1, y1) � (I − A)−1A(d(y0, y1)),

if u = d(y0, yn+1).
(5) If d(yn+1, y1) � A(d(yn, yn+1)) and g is a f -quasi-contraction, we see that, for some
i ∈ {0, 1, . . . , n}, j ∈ {1, . . . , n+ 1}, d(yn, yn+1) � An−1+i(d(y1, yj)), .
The case where j = n+ 1, implies d(yn+1, y1) = θ. Indeed, since I−An+i is an invertible
operator and An+i(P ) ⊆ P , we see d(yn+1, y1) = θ.
Otherwise, from the initial assumption,

d(yn+1, y1) � An+i(d(y1, yj)))

� An+i(I − A)−1A(d(y1, y0))

� (I − A)−1A(d(y1, y0)).

Thus, the inequality (i) holds for n ∈ N and inequality (ii) is obtained directly from (i):

d(yn, y0) � d(yn, y1) + d(y1, y0)

� (I − A)−1A(d(y1, y0)) + d(y1, y0)

= (I − A)−1(d(y1, y0)), n ∈ N.

We will demonstrate that (yn)n∈N is a Cauchy sequence in X, thus it is convergent.
Suppose that n,m ∈ N, m > n.
Mapping g is a f -quasi-contraction, so there exist i, j ∈ N, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

d(yn, ym) � An−1(d(yi, yj)),

which brings us to
d(yn, ym) � 2An(I − A)−1(d(y1, y0)).

Since, 2An(I − A)−1(d(y1, y0)) → θ, n → ∞, by Lemma 2.1.1, (yn)n∈N is a Cauchy
sequence and there exists y ∈ X, lim

n→∞
yn = y.

First of all, we may infer that if f and g have a common fixed point, then it is unique.
If f(x) = g(x) = x and f(y) = g(y) = y, then

d(x, y) = d(g(x), g(y)) � A(u), u ∈ {θ, d(x, y)}. (3.2)

Either way, it follows x = y.
Further on, let us observe two different cases, if f is continuous, or if g is continuous.
Suppose that f is continuous. We need to corroborate that g(y) = f(y) is a common
fixed point of f and g.
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The continuity of f leads to lim
n→∞

f(yn) = f(y). Additionally, f and g commute, indicat-

ing g(yn) = f(yn+1) and lim
n→∞

g(yn) = f(y).

For c � θ and ε � θ choose n0 ∈ n such that for each m,n ≥ n0 following inequalities
hold:

d(f(yn), f(y))� c, d(f(yn), f(y))� ε and d(f(yn), f(ym))� ε. (3.3)

For any n > n0 + 1, observe the triangle inequality

d(g(y), f(y)) � d(g(y), f(yn+1)) + d(f(yn+1), f(y)) (3.4)

Recall that g is a f -quasi-contraction of Perov type, so

d(g(y), f(yn+1)) = d(g(y), g(yn)) � A(u)

for some

u ∈ {d(f(y), f(yn)), d(f(y), f(yn+1)), d(f(yn), f(yn+1)), d(f(y), g(y)), d(f(yn), g(y))}.
(3.5)

Form subsequences (yn,i) ⊆ (yn) in a way that d(g(y), f(yn,i)) � A(un,i) where un,i is
respectively chosen.
If any of subsequences (yn,i), i = 1, 3 is infinite, then (3.3), (3.4) and (3.5) along with

d(g(y), f(y)) � A(ε) + c,

point to
d(g(y), f(y)) � A(ε), ε� θ. (3.6)

In case (yn,4) is infinite, then

d(g(y), f(y)) � A(d(g(y), f(y))) + c, c� θ,

we perceive
d(g(y), f(y)) � A(d(g(y), f(y))). (3.7)

Eventually, the case where (yn,5) is the only infinite subsequence implies

d(g(y), f(y)) � A(d(f(yn), g(y))) + d(f(yn+1), f(y))

� A(d(f(yn), f(y))) + A(d(f(y), g(y))) + c

� A(d(f(y), g(y))) + A(ε) + c, c, ε� θ.

Further,

d(g(y), f(y)) � A(d(g(y), f(y))) + A(ε), ε� θ. (3.8)

Each of the inequalities (3.6), (3.7) and (3.8) lead us to the conclusion

d(g(y), f(y)) = θ ⇔ g(y) = f(y). (3.9)

By choosing ε = ε
n
, n ∈ N, we get

d(g(y), f(y)) � A(d(g(y), f(y))) =⇒ d(g(y), f(y)) � θ
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and consequently (3.9).
Note that (3.9) and fg = gf imply

g2(y) = g(f(y)) = f(g(y)) = f 2(y). (3.10)

Thus, it is sufficient to show g(g(y)) = g(y). Select

u ∈ {d(f(g(y)), f(y)), d(f(g(y)), g(y)), d(f(g(y)), g(g(y))), d(f(y), g(y)), d(f(y), g(g(y)))}

that satisfies d(g(g(y)), g(y)) � A(u). From (3.9) and (3.10), we may conclude that u ∈
{θ, d(g(g(y)), g(y))} and g(g(y)) = g(y). This equality combined with (3.10) determines
this part of the proof.

Alternatively, consider that g is continuous. Then it will be demonstrated that y is a
unique common fixed point of f and g.
Similarly as in first case, lim

n→∞
f(yn) = lim

n→∞
g(yn) = g(y). For arbitrary c� θ and ε� θ

choose n0 ∈ n such that for every m,n ≥ n0 following inequalities hold:

d(g(y), g(yn))� c

2
, ε, d(yn, y)� c

2
, d(yn, ym)� ε and d(g(yn), g(ym))� ε. (3.11)

Applying the triangle inequality for n > n0 we get

d(g(y), y) � d(g(y), g(yn)) + d(g(yn), yn) + d(yn, y) � c+ d(g(yn), yn). (3.12)

According to (3.1) choose un such that d(g(yn), yn) � A(un).
If un ∈ {d(g(yn−1), g(yn)), d(yn−1, yn)} for infinitely many n ∈ N, then (3.11) and (3.12)
imply

d(g(y), y) � c+ A(ε), c, ε� θ,

consequently
d(g(y), y) � A(ε), ε� θ. (3.13)

Otherwise, choose n > n0 such that (3.11) is fulfilled and m ∈ N, d(g(yn+m), yn+m) �
A(un+m) where

un+m ∈ {d(g(yn+m−1), yn+m−1), d(g(yn+m−1), yn+m), d(g(yn+m), yn+m−1)}.

Hence,
d(g(yn+m), yn+m) � Am+k(vm),

for vm ∈ {d(g(yn), yn+i), d(g(yn+j), yn)} for some 0 ≤ k, i, j ≤ m.
Relaying on

d(g(yn), yn+i) � d(g(yn), yn) + d(yn, yn+i)

� d(g(yn), yn) + ε,

and

d(g(yn+j), yn) � d(g(yn+j), g(yn)) + d(g(yn), yn)

� ε+ d(g(yn), yn),
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it proceeds
d(g(yn+m), yn+m) � Am+k(ε) + Am+k(d(g(yn), yn)). (3.14)

In addition,

d(g(y), y) � d(g(y), g(yn+m)) + d(g(yn+m), yn+m) + d(yn+m, y) (3.15)

� c+ Am+k(ε) + Am+k(d(g(yn), yn)).

leads to
d(g(y), y) � c, c� θ. (3.16)

Conjointly, (3.15) and (3.16), for ε = ε
n

and c = c
n
, n = 1, 2, . . . , indicate

θ � d(g(y), y) � A

(
ε

n

)
=
A(ε)

n
→ θ, n→∞,

θ � d(g(y), y) � c

n
→ θ, n→∞.

Hence, g(y) = y.
Notice that lim

n→∞
f(yn) = lim

n→∞
g(yn) = y and for c� θ, ε� θ there exists n1 ∈ N,

n,m ≥ n1 =⇒ d(g(yn), y)� c, d(g(yn), y)� ε and d(g(yn), g(ym))� ε.

Due to the condition g(X) ⊆ f(X), (∃z ∈ X) y = g(y) = f(z).
It remains to estimate distance between g(z) and y. Choose n > n1, then

d(g(z), y) � d(g(z), g(yn)) + d(g(yn), y) (3.17)

� A(un) + c

for

un ∈ {d(y, g(yn−1)), d(y, g(z)), d(y, g(yn)), d(g(yn−1), g(z)), d(g(yn−1), g(yn))}.

If un ∈ {d(y, g(yn−1)), d(y, g(yn)), d(g(yn−1), g(yn))} for infinitely many n > n1 then

d(g(z), y) � A(ε) + c,
for any c�θ

=⇒ d(g(z), y) � A(ε). (3.18)

In the case that un = d(g(z), y) for infinitely many n > n1,

d(g(z), y) � (I − A)−1(c), c� θ. (3.19)

Otherwise, observe n > n1 such that d(g(z), g(yn+m)) � A(g(z), g(yn+m−1)) for every
m ∈ N. Accordingly,

d(g(z), y) � d(g(z), g(yn+m)) + d(g(yn+m), y)

� Am(d(g(z), g(yn))) + c.

If m → ∞, then d(g(z), y) � c. Again, on a similar way as in the proof g(y) = y, from
the last observation, (3.18) and (3.19) we conclude that g(z) and y coincide which brings
us to f(y) = f(g(z)) = g(f(z)) = g(y) = y.
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Theorem 3.1.2 for f(x) = x, x ∈ X implies Theorem 2.2.2. Obviously, the result of Ćirić
([39]) follows from this corollary. Also as direct consequences of Theorem 3.1.2 we get
generalizations of Jungck’s ([77]) and Das and Naik’s ([43]) results on non-normal cone
metric spaces and generalizations of Ilić and Rakočević’s results ([70]).

Corollary 3.1.3. Let (X, d) be a complete cone metric space with a solid cone P . Let f
be a continuous self-mapping on X and g be any self-mapping on X that commutes with
f . If f and g satisfy g(X) ⊆ f(X) and there exists a positive operator A ∈ B(E) with
r(A) < 1 such that for any x, y ∈ X

d(g(x), g(y)) � A(d(f(x), f(y))). (3.20)

Then f and g have a unique common fixed point.

Proof. If f and g satisfy (3.20), then (3.1) is evidently satisfied for u = d(f(x), f(y)).
From Theorem 3.1.2 result of Corollary directly follows.

Corollary 3.1.4. Let (X, d) be a complete cone metric space with a solid cone P . Let f
be a continuous self-mapping on X and g be any self-mapping on X that commutes with
f . If f and g satisfy g(X) ⊆ f(X) and there exists a positive operator A ∈ B(E) with
r(A) < 1 such that for any x, y ∈ X

d(g(x), g(y)) � A(Md(x, y)), (3.21)

for some

Md(x, y) ∈
{
d(f(x), f(y)), d(f(x), g(x)), d(f(x), g(y)), d(f(y), g(y)), d(f(y), g(x))

}
.

Then f and g have a unique common fixed point.

Theorem 3.1.5. Let (X, d) be a complete cone metric space with a solid cone P , f : X 7→
X, f 2 continuous, g : f(X) 7→ X such that g(f(X)) ⊆ f 2(X) and f(g(x)) = g(f(x)),
x ∈ f(X). Assume that there exists a positive operator A ∈ B(E) with r(A) < 1, such
that (3.1) is satisfied for every x, y ∈ f(X), then f and g have a unique common fixed
point in f(X).

Proof. As in the proof of Theorem 3.1.2, define sequence (yn)n∈N for arbitrary x0 ∈ f(X)
such that f(xn+1) = g(xn) = yn, n ∈ N. Perceive that f(yn) = g(yn−1) = zn determines
yet another sequence (zn)n∈N.
Because

d(zn, zm) � A(u)

where

u ∈ {d(zn−1, zm−1), d(zn−1, zn), d(zn−1, zm), d(zm−1, zn), d(zm−1, zm)}.

Similarly as in the proof of Theorem 3.1.2, it follows that (zn) is a Cauchy sequence.
There exists z ∈ X, lim

n→∞
zn = z ∈ X.

We will prove that f 2(z) = g(f(z)) = u and that u is a unique common fixed point of f
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and g in X.
Since f 2(zn+1) = g(f(zn)), then d(g(f(zn)), g(f(z))) � A(un) where

un ∈ {d(g(f(zn−1)), f
2(z)), d(g(f(zn−1)), g(f(zn))), d(g(f(zn−1)), g(f(z)),

d(f 2(z), g(f(zn))), d(f 2(z), g(f(z)))}.

The inequality

d(f 2(z), g(f(z))) � d(f 2(z), f 2(zn+1)) + d(g(f(zn)), g(f(z)))

� d(f 2(z), f 2(zn+1)) + A(un),

along with lim
n→∞

f 2(zn) = lim
n→∞

g(f(zn)) = f 2(z), after similar discussion as in previous

theorems, gives us f 2(z) = g(f(z)).
Remark that f 3(z) = f(g(f(z))) = g(f 2(z)) allows us to prove only f 3(z) = f 2(z).

But recall that g is a f -quasi-contraction, so d(f 3(z), f 2(z)) = d(g(f 2(z)), g(f(z))) �
A(u), where u ∈ {d(f 3(z), f 2(z)), θ}.

Anyway, f 2(z) is a fixed point of f . As in the proof of Theorem 3.1.2, we have that
if u is a common fixed point of f and g then, since u ∈ f(X), d(z, u) � A(d(z, u)), thus
u = z.

Let x ∈ X be arbitrary, (yn)n∈N as defined above. If we denote Og,f (x, n) =
{y0, . . . , yn}, Og,f (x,∞) = {y0, . . . , yn. . . .}, δ = max{‖d(yi, yj)‖ | i, j ∈ N0} and δn =
max{‖d(yi, yj)‖ | 0 ≤ i, j ≤ n}, n ∈ N, then we can state the following result.

Lemma 3.1.6. Let (X, d) be a cone metric space, P a normal cone with a normal
constant K, g : X 7→ X a f -quasi-contraction and K‖A‖ < 1. Then, for every x ∈ X,

(i) for each n ∈ N there exists i ∈ {1, . . . , n} such that

δn = ‖d(y0, yi)‖;

(ii) For arbitrary n, n0 ∈ N,

δn ≤
K

1−Kn0‖A‖n0
δn0 ;

(iii) For each n ∈ N,

δ ≤ K

1−Kn‖A‖n
δn.

Proof. (i) For 1 ≤ i ≤ j ≤ n, d(yi, yj) � A(u
(1)
i,j ) where

u
(1)
i,j ∈ {d(yi−1, yj−1), d(yi−1, yi), d(yi−1, yj), d(yj−1, yi), d(yj−1, yj)},

so, ‖d(yi, yj)‖ ≤ K‖A‖‖u(1)i,j ‖ ≤ K‖A‖δn. Since K‖A‖ < 1, δn = ‖d(y0, yi)‖ for some
i ∈ {1, . . . , n}.
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(ii) If n ≤ n0, then the inequality

δn ≤
K

1−Kn0‖A‖n0
δn0 (3.22)

evidently holds cause K
1−Kn0‖A‖n0

> 1. Thus, we may assume n > n0.
There exists i, j ∈ N, 1 ≤ i ≤ n0 and 1 ≤ j ≤ n such that

δ0 = ‖d(y0, yi)‖ and δn = ‖d(y0, yj)‖.

If j ≤ n0, then δn = δ0 . Otherwise, d(y0, yj) � d(y0, yn0) + d(yn0 , yj).

Clearly, d(yn0 , yj) � A

(
u
(1)
n0,j

)
, where

u
(1)
n0,j
∈
{
d(yn0−1, yj−1), d(yn0−1, yn0), d(yn0−1, yj), d(yn0 , yj−1), d(yj−1, yj)

}
.

Moreover, the inequality
δn ≤ Kδ0 +K‖A‖‖u(1)n0,j

‖
jointly with

u
(1)
n0,j
� A

(
u
(2)
n0,j

)
,

where

u
(2)
n0,j
∈ O

(
yn0−2, j − n0 + 2

)
⊆ Og,f (x, n)

implies
δn ≤ Kδ0 +K2‖A‖2‖u(2)n0,j

‖.
Continuing in the same way, after n0 − 2 more steps, we get

u
(n0−1)
n0,j

� A

(
u
(n0)
n0,j

)
, u

(n0)
n0,j
∈ Og,f (x, n)

and
δn ≤ Kδ0 +Kn0‖A‖n0δn.

Hence, the inequality (3.22) holds for every n, n0 ∈ N.

(iii) Considering the definition of δ, (iii) follows directly from (ii).

Based on made estimations, we can state new result regarding diameter of an orbit.

Corollary 3.1.7. Under the assumptions of Lemma 3.1.6 we have

δ ≤ K

1−K‖A‖
‖d(y0, y1))‖, x ∈ X.

Theorem 3.1.8. Let (X, d) be a complete cone metric space and P a normal cone with
a normal constant K. If g, f : X 7→ X, f commutes with g, g(X) ⊆ f(X), f or g is
continuous and satisfy (3.1) with K‖A‖ < 1, then f and g have a unique common fixed
point in X.
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Proof. If the fixed point exists it is unique thanks to (3.2) and K‖A‖ < 1.

As in the proof of Lemma 3.1.6 (i), d(yn, yn+1) � A(u
(1)
n,n+1)

u
(1)
n,n+1 ∈ {d(yn−1, yn), d(yn−1, yn), d(yn−1, yn+1), d(yn, yn), d(yn, yn+1)},

and ‖d(yn, yn+1)‖ ≤ K‖A‖‖u(1)n,n+1‖.
Further on, there exists

u
(2)
n,n+1 ∈ {d(yn−2, yn−1), d(yn−2, yn), d(yn−1, yn−1), d(yn−1, yn),

d(yn−2, yn+1), d(yn, yn+1), d(yn−1, yn+1)}

such that ‖d(yn, yn+1)‖ ≤ K2‖A‖2‖u(2)n,n+1‖, u
(2)
n,n+1 ∈ Og,f (x, n + 1) ⊆ Og,f (x,∞). Ap-

plying the same procedure n− 2 more times, we get

‖d(yn, yn+1)‖ ≤ Kn‖A‖n‖u(n)n,n+1‖ ≤ Kn‖A‖nδ.

Therefore,

d(yn, ym) �
m−1∑
i=n

d(yi, yi+1) �
m−1∑
i=n

A(u
(1)
i,i+1), m > n,

implies

‖d(yn, ym)‖ ≤
m−1∑
i=n

K‖A‖‖u(1)i,i+1‖ ≤ . . . ≤
m−1∑
i=n

(K‖A‖)iδ.

Since δ < ∞ and K‖A‖ < 1, (yn)n∈N is a Cauchy sequence in a complete cone metric
space X, thus (∃y ∈ X) lim

n→∞
yn = y.

If g is continuous, then lim
n→∞

d(g(yn), g(y)) = lim
n→∞

d(f(yn), g(y)) = θ, lim
n→∞

d(g(yn), yn) =

d(g(y), y) and d(g(yn), yn) � A(un,i) for some i ∈ {1, . . . , 5} where un,i is d(g(yn−1), yn−1),
d(g(yn−1), yn), d(yn−1, g(yn)), d(g(yn−1), g(yn)), d(yn−1, yn), i = 1, 5, respectively.
Obviously lim

n→∞
un,i = d(g(y), y), i = 1, 3 and lim

n→∞
un,i = θ if i = 4, 5, however g(y) = y.

Recall that g(X) ⊆ f(X) and consider z ∈ X such that y = g(y) = f(z). Then
d(g(z), yn) � A(u) where

u ∈ {d(g(y), yn−1), d(g(y), g(z)), d(g(y), yn), d(yn−1, g(z)), d(yn−1, yn)}. (3.23)

Furthermore, from d(g(z), y) = lim
n→∞

d(g(z), yn), (3.23) and

lim
n→∞

d(g(y), yn−1) = lim
n→∞

d(g(y), yn) = d(g(y), y) = θ

lim
n→∞

d(yn−1, g(z)) = d(y, g(z));

lim
n→∞

d(yn−1, yn) = θ,

it follows g(z) = y. On the other hand, f(y) = f(g(z)) = g(f(z)) = g(y) = y. Hence, in
this case, y is a common fixed point of f and g.
Similarly, we get that g(y) = f(y) is a common fixed point of mappings f and g
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if f is continuous. Then lim
n→∞

g(yn) = lim
n→∞

f(yn) = f(y) and lim
n→∞

d(g(y), f(y)) =

lim
n→∞

d(g(y), g(yn)). Again, because g is a f -quasi-contraction, we can make a conclu-

sion that g(y) = f(y).
Equation g2(y) = f 2(y) = g(f(y)) = f(g(y)) shows that it is sufficient to prove
g(g(y)) = g(y). Evidently, d(g(g(y)), g(y)) � A(u), for some

u ∈ {d(f(g(y)), f(y)), d(f(g(y)), g(y)), d(f(g(y)), g(g(y))),

d(f(y), g(y)), d(f(y), g(g(y)))}.

Even though g(y) = f(y) and f(g(y)) = g(g(y)), so u ∈ {θ, d(g(g(y)), g(y))} and
g(g(y)) = g(y).

Fixed point problem may be observed as a special case of common fixed point problem
when one of the mappings is identity map on X. Regarding that, if g is identity mapping
on X, and f has all the properties requested by Theorem 3.1.2, then it is obvious
that this assumptions are equivalent to the statement of Theorem 2.2.2. Particulary,
Theorem 2.2.2 is corollary of this common fixed point result. Furthermore, all obtained
assessments hold. Having that in mind, some inequalities about iterative sequence and
diameter of an orbit of Perov type quasi-contraction f are gathered.

Corollary 3.1.9. Let (X, d) be a cone metric space, P a normal cone with a normal
constant K, f : X 7→ X a quasi-contraction and K‖A‖ < 1. Then, for every x ∈ X,
n,m ∈ N, m > n, the following inequalities hold:

(i) ‖d(yn, yn+1)‖ ≤ (K‖A‖)nδn+1 ≤ (K‖A‖)nδ;

(ii) ‖d(yn, ym)‖ ≤ (K‖A‖)n
1−K‖A‖ δ,

where g(x) = f(x1) and g(xn) = f(xn+1) = yn, for each n ∈ N.

As we made some comment before, Ćirić quasi-contraction is a special type of Perov
type quasi-contraction on normal cone metric space (metric space), so we can make sim-
ilar assessment for this kind of mapping regarding its fixed point, orbit and the iterative
sequence.

Analogously, as for Theorem 3.1.2, we can formulate proposition that combines state-
ments similar to Corollaries 3.1.3 and 3.1.4 but in the setting of normal cone metric space.

Corollary 3.1.10. Let (X, d) be a complete cone metric space and P be a normal cone.
Let f, g : X 7→ X, g commutes with f , f continuous and g(X) ⊆ f(X). If there exists
A ∈ B(E), K‖A‖ < 1 such that condition (3.20) is satisfied for all x, y ∈ X or (3.21) is
satisfied for all x, y ∈ X, then g and f have a unique common fixed point in X.

Theorem 3.1.11. Let (X, d) be a complete cone metric space and P be a normal cone.
Let f : X 7→ X, f 2 is continuous, g : f(X) 7→ X be such that g(f(X)) ⊆ f 2(X) and
f(g(x)) = g(f(x)), x ∈ f(X). If (3.1) is satisfied for every x ∈ f(X), A ∈ B(E),
K‖A‖ < 1, then f and g have a unique common fixed point in f(X).
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Proof. As in the proof of Theorem 3.1.5, define a sequence (zn)n∈N for arbitrary x0 ∈
f(X). If f and g have a common fixed point then it is evidently unique. Due to Corollary
3.1.9, δ <∞ (Lemma 3.1.6) and

‖d(zn, zm)‖ ≤ (K‖A‖)n

1−K‖A‖
δ,

(zn) is a Cauchy sequence in (X, d) and lim
n→∞

zn = z for some z ∈ X.

We will prove that f 2(z) = g(f(z)) = u and that u is a unique common fixed point of f
and g in X.
Since f 2(zn−1) = g(f(zn)), then d(g(f(zn)), g(f(z))) � A(un) where

un ∈ {d(f 2(zn), f 2(z)), d(f 2(zn)), g(f(zn))), d(f 2(zn), g(f(z)),

d(f 2(z), g(f(zn))), d(f 2(z), g(f(z)))}. (3.24)

Consider
d(f 2(z), g(f(z))) � d(f 2(z), f 2(zn−1)) + d(g(f(zn)), g(f(z)))

along with (3.24) and note that lim
n→∞

d(f 2(z), f 2(zn)) = θ.

If un = d(f 2(z), g(f(z))) for infinitely many n ∈ N, then clearly f 2(z) = g(f(z)).
If un ∈ {d(f 2(zn), f 2(z)), d(f 2(zn)), g(f(zn))), d(f 2(z), g(f(zn)))} for infinitely many n ∈
N, then, since lim

n→∞
un = θ we have d(f 2(z), g(f(z))) = θ, i.e., f 2(z) = g(f(z)).

Ultimately, if un = d(f 2(zn), g(f(z)) for infinitely many n ∈ N, then as n→∞ we get

d(f 2(z), g(f(z))) � A(d(f 2(z), g(f(z))),

thus f 2(z) = g(f(z)). If we denote that point with u it is enough to prove that g(u) = u
because f(u) = f(g(f(z))) = g(f 2(z)) = g(u). Finally,

d(g(u), u) = d(g(f 2(z)), g(f(z))) � A(d(f 3(z), f 2(z))) = A(d(g(u), u)),

and g(u) = u. Analogously to the proof of the Theorem 3.1.8 and Theorem (3.1.5), u is
a unique common fixed point of f and g.

Since the previous theorems contain as necessary condition commutativity of the
mappings, some extensions of these results were inspired by the goal of replacing the
commutativity with some weaker conditions. That way were introduced weak commu-
tativity, R-commutativity, weak compatibility and other. We will include some results
using the weak compatibility condition.
Compatible mappings, but in the case of metric space, were introduced by Jungck [77].
Those concepts were extended on a cone metric spaces in [82], [128] and [19].

Definition 3.1.12. A pair of self-mappings on a cone metric space (X, d) is said to be
compatible if for arbitrary sequence (xn) in X such that lim

n→∞
f(xn) = lim

n→∞
g(xn) = t ∈ X,

and for arbitrary c� θ there exists n0 ∈ N such that d(f(g(xn)), g(f(xn)))� c wherever
n ≥ n0. It is said to be weakly compatible if f(x) = g(x) implies f(g(x)) = g(f(x)).
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Lemma 3.1.13. ([82]) If the pair of a self-mappings (f, g) on a cone metric space (X, d)
is compatible, then it is also weakly compatible.

In the Example 2.4. of [82] it has been shown that weak compatibility doesn’t imply
the compatibility neither in normal, nor in non-normal cone metric spaces.
Definition of the property (E.A.) is used to replace strict conditions of commutativity in
addition with weak compatibility and it has been introduced by Aamri and Moutawakil
[1] in 2002. It has been modified also by Kadelburg at al. in [82] for the setting of cone
metric space.

Definition 3.1.14. A pair of self-mappings on a cone metric space (X, d) has a (E.A.)
property if there exists a sequence (xn) ⊆ X such that lim

n→∞
f(xn) = lim

n→∞
g(xn) = t ∈ X.

Obviously, every non-compatible pair of mappings has the property (E.A). Proceeding
example shows that the class of the pairs of self-mappings that have property (E.A.)
contains some compatible pair of mappings.

Example 13. Let X = [0, 1] with a usual metric, d(x, y) = |x−y|, x, y ∈ X. If f(x) = x,
x ∈ X and

g(x) =

{
1, x = 0
0, x ∈ (0, 1]

,

then only for all sequences (xn) ⊆ (0, 1], xn → 0, n→∞ (or with finitely many xn = 0),
lim
n→∞

f(xn) = lim
n→∞

g(xn)(= 0). But f(g(xn)) = 0 and g(f(xn)) = 0, so (f, g) is a pair of

compatible mappings.

Theorem 3.1.15. Let (X, d) be a cone metric space with a solid cone P , f : X 7→ X
and g : X 7→ X be two weakly compatible mappings such that

(i) (f, g) satisfy property (E.A.);

(ii) g is a f -quasi-contraction;

If f(X) is a closed subspace of X or g(X) is closed and g(X) ⊆ f(X), then f and g
have a unique common fixed point.

Proof. Observe a sequence (xn)n∈N such that lim
n→∞

f(xn) = lim
n→∞

g(xn) = x. Assume that

f(X) is a closed subspace of X. The proof goes similarly in the other case.
Then x = f(a) for some a ∈ X. Let us estimate d(g(a), f(a)).
Choose arbitrary c, ε ∈ int(P ) and n0 ∈ N such that

d(g(xn), f(a))� ε, d(g(xn), f(a))� c

2
, d(f(xn), f(a))� c

2
for n ≥ n0. (3.25)

Then the inequality

d(g(a), f(a)) � d(g(a), g(xn)) + ε, n ≥ n0 (3.26)
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follows by triangle inequality and (3.25). Remark that, further on, we consider n > n0.
Since g is a f -quasi-contraction, then d(g(a), g(xn)) � A(un) where

un ∈ {d(f(a), f(xn)), d(g(a), f(a)), d(g(xn), f(xn)), d(g(a), f(xn)), d(f(a), g(xn))}.
(3.27)

Equations (3.25), (3.26) and (3.27,) along with some triangle inequalities, now imply
that one of the following inequalities is satisfied:

(1) d(g(a), f(a)) � 1
2
A(c) + ε;

(2) d(g(a), f(a)) � A(d(g(a), f(a))) + ε;

(3) d(g(a), f(a)) � A(c) + ε;

(4) d(g(a), f(a)) � A(d(g(a), f(a))) + 1
2
A(c) + ε;

(5) d(g(a), f(a)) � 1
2
A(c) + ε.

However, each of these inequalities holds for any ε � θ. If we additionally observe
c := c

n
, n ∈ N, it proceeds

d(g(a), f(a)) � θ or d(g(a), f(a)) � A(d(g(a), f(a))).

Second inequality is equivalent to the first because (I−A)−1 is a positive linear operator
and a is a coincidence point of f and g.
It remains to prove g(g(a)) = g(a) since then, by weakly compatibility of f and g,
g(f(a)) = g(g(a)) = f(g(a)) = f(f(a)).
Note that d(g(a), g(g(a))) � A(u) for some u ∈ {d(g(a), g(g(a))), θ}. Hence, g(g(a)) =
g(a) and, by previous observations, f(g(a)) = g(a) i.e. f(a) = g(a) is a common fixed
point of f and g.
Uniqueness obviously follows since g is a f -quasi-contraction.
In the case that g(X) is a closed subspace of X and g(X) ⊆ f(X), we have lim

n→∞
f(xn) =

lim
n→∞

g(xn) = f(b) = g(a) for some a, b ∈ X, thus the proof is analogous.

Same proof technique can be used to justify the next two theorems, therefore we
present them without any proof.

Theorem 3.1.16. Let (X, d) be a cone metric space with a solid cone P , f, g : X 7→ X
weakly compatible mappings that satisfy property (E.A.). If there exists positive operator
A ∈ B(E) with r(A) < 1 such that for each x, y ∈ X

d(g(x), g(y)) � A(u)

where

u ∈
{
d(f(x), f(y)), d(f(x), g(x)), d(f(y), g(y)),

d(g(x), f(y)) + d(g(y), f(x))

2

}
.

If f(X) is a closed or g(X) ⊆ f(X) is a closed subspace of X, then f and g have a
unique common fixed point.
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Theorem 3.1.17. Let (X, d) be a cone metric space with a solid cone P , f, g : X 7→ X
weakly compatible mappings that satisfy property (E.A.). If there exists positive operator
A ∈ B(E) with r(A) < 1 such that for each x, y ∈ X

d(g(x), g(y)) � A(u)

where

u ∈
{
d(f(x), f(y)),

d(f(x), g(x)) + d(f(y), g(y))

2
,
d(g(x), f(y)) + d(g(y), f(x))

2

}
.

If f(X) is a closed or g(X) ⊆ f(X) is a closed subspace of X, then f and g have a
unique common fixed point.

Note that these three conditions are not related in the setting of cone metric space
since they do not have to be even comparable.

3.2 Sequence of mappings

Along with common fixed point problem for a pair of mappings, we discuss on existence
of a common fixed point for a sequence of mappings. Goal of this section is to determine
conditions for existence and uniqueness of the common fixed point for some sequence of
mappings. All presented results can be transferred to the family of mappings on cone
metric space, and consequently, on metric space.

Two kind of contractive conditions are analyzed depending of the fact is there some
mean mapping that relates to all other members of a sequence or not. We also pay
attention on some kind of delay contractive conditions including a convergent series of
constants.

Theorem 3.2.1. Let (X, d) be a complete solid cone metric space and (Tn)n∈N0 a se-
quence of self-mappings on X such that

d(T0x, Tny) � A(un), for all x, y ∈ X, n ∈ N,

where

un ∈ Dx,y =

{
d(x, y), d(x, T0x), d(y, Tny),

1

2
(d(x, Tny) + d(T0x, y))

}
,

for an increasing operator A ∈ B(E). If r(A) < 1, then there exists a unique z ∈ X such
that Tnz = z, n ∈ N0 and a sequence (xn)n∈N converges to z for arbitrary x0 ∈ X where

x2n−1 = T0x2n−2 and x2n = Tnx2n−1, n ∈ N. (3.28)

Moreover, z is a unique fixed point of Tn, n ∈ N0.
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Proof. For an arbitrary x0 ∈ X observe sequence (xn) defined as in (3.28) and denote
Dxn,xm with Dn,m. Then for some un ∈ D2n,2n−1,

d(x2n+1, x2n) � A(un),

where D2n,2n−1 =
{
d(x2n, x2n−1), d(x2n, x2n+1),

1
2
d(x2n−1, x2n+1)

}
.

Similarly, for un+1 ∈ D2n,2n+1,

d(x2n+1, x2n+2) � A(un+1),

where D2n,2n+1 =
{
d(x2n, x2n+1), d(x2n+1, x2n+2),

1
2
d(x2n, x2n+2)

}
.

Hence,
d(xn, xn+1) � A(u)

for u ∈
{
d(xn−1, xn), d(xn, xn+1),

1
2
d(xn−1, xn+1)

}
, n ∈ N.

We will consider few different cases.

(1) If d(xn, xn+1) � A(d(xn, xn+1)), then d(xn, xn+1) � (I −A)−1(θ) = θ, i.e. d(xn, xn+1)
= θ. Remark that positivity of (I − A)−1 must be used to obtain this inequality.

(2) Assuming d(xn, xn+1) � 1
2
A(d(xn−1, xn+1)), then,

d(xn, xn+1) �
(
I − A

2

)−1
A

2
(d(xn−1, xn)) . (3.29)

Further on,

r

((
I − A

2

)−1
A

2

)
≤ 1

1− r(A)
2

r(A)

2
=

r(A)

2− r(A)
< 1,

and
(
I − A

2

)−1 A
2

is an increasing operator.

(3) Ultimately, if u = d(xn−1, xn), then d(xn, xn+1) � A(d(xn−1, xn)).

If An ∈
{
A,
(
I − A

2

)−1 A
2

}
, then, from previous argumentation (1)-(3), it proceeds

d(xn, xn+1) � An(d(xn−1, xn)), n ∈ N,

and An is an increasing operator with spectral radius less than 1. Continuing in the
same manner, after n− 1 more steps, the inequaity

d(xn, xn+1) �

(
n∏
i=1

Ai

)
(d(x0, x1)) (3.30)

is obtained. Denote with B an increasing operator 1
2

(
I − A

2

)−1
and select n,m ∈ N such

that m > n. Due to (3.30), it follows

d(xn, xm) �
m−1∑
i=n

d(xi, xi+1) �
m−1∑
i=n

AiBji(d(x0, x1))
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where 0 ≤ ji ≤ i and ji ≤ ji+1, i ∈ N.

If the sequence jn is bounded, then
∞∑
n=1

AnBjn evidently converges and

m−1∑
i=n

AiBji(d(x0, x1))→ θ, n,m→∞.

Consequently, (xn) is a Cauchy sequence.

Otherwise, if jn →∞, n→∞, then
∞∑
n=1

Bjn converges since

r

((
I − A

2

)−1)
= r

(
I +

A

2

(
I − A

2

)−1)

≤ 1 + r

(
A

2

(
I − A

2

)−1)

≤ 1 + r

(
A

2

)
r

((
I − A

2

)−1)
,

thus

r(B) = r

(
1

2

(
I − A

2

)−1)
≤ 1

2

1

1− r
(
A
2

) =
1

2− r(A)
< 1,

Moreover,
∞∑
k=0

Bk converges and

(
∞∑
k=0

Bk

)
−Bj is an increasing operator for any j ∈ N0,

d(xn, xm) �
∞∑
k=0

Bk

∞∑
i=n

Ai(d(x0, x1)).

Thanks to
∞∑
i=n

Ai → Θ, as n→∞, and Lemma 2.1.1, (xn) is a Cauchy sequence in a

complete cone metric space X.
In either way, there exists lim

n→∞
xn = z for some z ∈ X.

For any ε� θ, choose n0 ∈ N such that for alln,m ≥ n0, d(xn, z)� ε
2

and d(xn, xm)�
ε
2
. If n ≥ n0, estimate d(z, T0z):

d(z, T0z) � d(z, x2n) + d(x2n, T0z) � ε

2
+ A(u),

where

u ∈
{
d(z, x2n−1), d(z, T0z), d(x2n−1, x2n),

1

2
(d(z, x2n) + d(x2n−1, T0z))

}
.

For u ∈ {(z, x2n−1), d(x2n−1, x2n)}, it follows

d(z, T0z) � ε

2
+ A

(ε
2

)
. (3.31)
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If d(z, T0z) � ε
2

+ A(d(z, T0z)), then

d(z, T0z) � (I − A)−1
(ε

2

)
. (3.32)

Otherwise,

d(x2n, T0z) � A
(ε

4

)
+
A

2
(d(x2n−1, T0z))

� A
(ε

2

)
+
A

2
(d(x2n, T0z)) ,

gives d(x2n, T0z) �
(
I − A

2

)−1
A
(
ε
2

)
and

d(z, T0z) � ε

2
+

(
I − A

2

)−1
A
(ε

2

)
. (3.33)

Anyway, as ε := ε
n
, for n ∈ N, in (3.31), (3.32) and (3.33), respectively, we get T0z = z.

Analogously, Tnz = z for any n ∈ N. It remains to prove that z is uniquely determined.
Assume that Tny = y for all n ∈ N0, then

d(z, y) = d(T0z, Tny) � A(u)

for u ∈ {d(z, y), θ}.
This shows that z is a unique common fixed point of the sequence (Tn).

If Tn0y = y for some n0 ∈ N0, then

d(T0y, y) = d(T0y, Tn0y) � A(u), where u ∈
{

0, d(y, T0y),
1

2
d(y, T0y)

}
,

so d(T0y, y) � A(d(y, T0y)) gives T0y = y. Nevertheless, if T0y = y for some y ∈ X,
then, for any n ∈ N

d(y, Tny) = d(T0y, Tny) � A(u) where u ∈
{

0, d(y, Tny),
1

2
d(y, Tny)

}
.

Therefore, Tny = y for all n ∈ N0, thus z is unique fixed point for any Tn, n ∈ N0.

Let us recall that the following results was proved by Ćirić in [38].

Theorem 3.2.2. Let (Tn | n ∈ N0) be a sequence of mappings on a complete metric space
(X, d). If for some q ∈ (0, 1)

d(T0x, Tnx) ≤ qmax

{
d(x, y), d(x, T0x), d(y, Tny),

1

2
(d(x, Tny) + d(y, T0x))

}
holds for each n ∈ N0 and all x, y ∈ X, then there exists a unique point u ∈ X such that
Tnu = u for each n=0,1,2,. . . and for arbitrary x0 ∈ X a sequence

x0, x1 = T0x0, x2 = T1x1, x3 = T0x2, . . . , x2n−1 = T0x2n−2, x2n = Tnx2n−1, . . .

converges to u.
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It is possible to state several results for common fixed point of sequence of mappings
on normal cone metric space under slightly modified conditions. First difference is that
K2 figures instead of just K and positivity is excluded.

Theorem 3.2.3. Let (X, d) be a complete cone metric space, P a normal cone with a
normal constant K and (Tn)n∈N0 a sequence of self-mappings on X such that

d(T0x, Tny) � A(u), for all x, y ∈ X, n ∈ N,

where

u ∈ Dx,y =

{
d(x, y), d(x, T0x), d(y, Tny),

1

2
(d(x, Tny) + d(T0x, y))

}
,

for some operator A ∈ B(E). If K2‖A‖ < 1, then there exists a unique z ∈ X such that
Tnz = z, n ∈ N0 and a sequence (xn)n∈N defined in (3.28) converges to z for any x0 ∈ X.

Proof. Let x0 ∈ X be arbitrary and (xn) defined as in (3.28). By considering different
cases as in the proof of Theorem 3.2.1, we get

‖d(xn, xn+1)‖ ≤ b‖d(xn−1, xn)‖

where b ∈
{
K‖A‖, K2‖A‖

2−K2‖A‖

}
. Without loss of generality, let us assume that b =

max
{
K‖A‖, K2‖A‖

2−K2‖A‖

}
. Continuing in the same manner, it follows

‖d(xn, xn+1)‖ ≤ bn‖d(x0, x1)‖.

Choose n,m ∈ N such that m ≥ n. Since

‖d(xn, xm)‖ ≤
m−1∑
i=n

bi‖d(x0, x1)‖,

and both of the series
∞∑
n=1

(K‖A‖)n and
∞∑
n=1

(
K2‖A‖

2−K2‖A‖

)n
converge, (xn) is a Cauchy se-

quence and lim
n→∞

xn = z for some z ∈ X.

Moreover,
d(T0z, z) � d(T0z, x2n) + d(x2n, z) � A(un) + d(x2n, z)

where

un ∈
{
d(z, x2n−1), d(z, T0z), d(x2n−1, x2n),

1

2
(d(z, x2n) + d(x2n−1, T0z))

}
.

Choose ε > θ arbitrary and n0 ∈ N such that ‖d(z, xn)‖, ‖d(xn, xm)‖ < ε
2K

for any
n,m ≥ n0. Let n ≥ n0.
If un ∈ {d(z, x2n−1), d(x2n−1, x2n)}, then

‖d(T0z, z)‖ < K‖A‖ ε

2K
+
ε

2
< ε, (3.34)
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since ‖A‖ < 1. If un = d(z, T0z), then

‖d(z, T0z)‖ < ε

2 (1−K‖A‖)
. (3.35)

In the last case, un = 1
2

(d(z, x2n) + d(x2n−1, T0z)), it follows

‖d(T0z, x2n)‖ ≤ K‖A‖
2

(‖d(z, x2n)‖+ ‖d(x2n−1, T0z)‖)

≤ ‖A‖ε
4

+
K2‖A‖

2
(‖d(x2n−1, x2n)‖+ ‖d(x2n, T0z)‖) ,

and

‖d(T0z, x2n)‖ ≤ (1 +K)‖A‖
2(2−K2‖A‖)

ε.

Consequently,

‖d(z, T0z)‖ ≤ (2 +K)‖A‖
2(2−K2‖A‖)

ε. (3.36)

Positive constant ε was arbitrary, so the inequalities (3.34), (3.35) and (3.36) prove
that T0z = z. After similar estimations as in Theorem 3.2.1, Tnz = z for any n ∈ N.
Uniqueness also follows analogously.

Theorem 3.2.1 and Theorem 3.2.3 are obvious generalizations of Theorem 1 of [34] if
Ax = qx, x ∈ E and, additionally, Theorem 2.2.6.

It is a reasonable choice to transfer this result of a sequence of mappings on a more
particular case, pair of mappings. Therefore, it is a new kind of common fixed point
problem.

Corollary 3.2.4. Let (X, d) be a complete solid cone metric space and S, T : X 7→ X
mappings such that for some increasing operator A ∈ B(E)

d(Tx, Sy) � A(u), for all x, y ∈ X,

where

u ∈ Dx,y =

{
d(x, y), d(x, Tx), d(y, Sy),

1

2
(d(x, Sy) + d(Tx, y))

}
.

If r(A) < 1, then both T and S have a unique fixed point and it is a common fixed point
for T and S.

Corollary 3.2.5. Let (X, d) be a complete cone metric space, P a normal cone with a
normal constant K and T, S : X 7→ X mappings such that for some operator A ∈ B(E)

d(Tx, Sy) � A(u), for all x, y ∈ X,

where

u ∈ Dx,y =

{
d(x, y), d(x, Tx), d(y, Sy),

1

2
(d(x, Sy) + d(Tx, y))

}
.

If K2‖A‖ < 1, then both T and S have a unique fixed point and it is a common fixed
point for T and S.
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Observe that, in both corollaries, a sequence (xn), where x2n−1 = Tx2n−2 and x2n =
Sx2n−1, n ∈ N, converges to a uniquely determined fixed point z for an arbitrary x0 ∈ X.

Corollary 3.2.6. Let (X, d) be a complete solid cone metric space and (Tn)n∈N0 a se-
quence of self-mappings on X. If there exists some T0 : X 7→ X such that for each i ∈ N
there exist kn,mn ∈ N such that

d(T kn0 x, Tmn
n y) � A(u),

for all x, y ∈ X, where

u ∈ Dn =

{
d(x, y), d(x, T kn0 x), d(y, Tmn

n y),
1

2

(
d(x, Tmn

n y) + d(y, T kn0 x)
)}

,

where A ∈ B(E) is an increasing operator and r(A) < 1, then each Tn, n ∈ N0, has a
unique fixed point in X and it is a common fixed point for all Tn, n ∈ N0.

Proof. If we apply Corollary 3.2.4 for mappings T kn0 and Tmn
n where Tn is an arbitrary,

we get that T kn0 zn = zn for unique zn ∈ X, n ∈ N. But,

T kn0 (T0zn) = T0(T
kn
0 zn) = T0zn,

so T0zn = zn. For any j ∈ N, zn is also a fixed point of mapping T
kj
0 , thus z := zn = zj.

Obviously, Tnz = z and it is satisfied for any n ∈ N0 and z is a unique point with that
property.

Corollary 3.2.7. Let (X, d) be a complete cone metric space, P a normal cone with a
normal constant K and (Tn)n∈n0 a sequence of self-mappings on X. If there exists some
T0 : X 7→ X such that for each n ∈ N there exist kn,mn ∈ N such that

d(T kn0 x, Tmn
n y) � A(u) for x, y ∈ X,

where

u ∈ Dn =

{
d(x, y), d(x, T kn0 x), d(y, Tmn

n y),
1

2

(
d(x, Tmn

n y) + d(y, T kn0 x)
)}

,

operator A ∈ B(E) and K2‖A‖ < 1, then each Tn has a unique fixed point in X and it
is a common fixed point for all Tn, n ∈ N0.

As we commented before, the same results could be easily obtained for a family of self-
mappings and the proof is analogous. When dealing with a sequence of self-mappings,
many researches followed the course of determining existence of a ”limit” fixed point, in
other words, z ∈ X such that lim

n→∞
Tnz = z. This do not presume that z is fixed point

for any of mappings. This results find application in numerical analysis and justifying
convergence of defined iterative methods. On the top of that, existence of this kind of
point could direct us on possible fixed point, and looking from application angle, to some
solution of equation (functional, integral, differential).
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Theorem 3.2.8. Let (X, d) be a complete solid cone metric space and (Tn)n∈N0 a se-
quence of self-mappings on X such that

d(Tnx, Tn+1y) � A(un) + an,

for all x, y ∈ X and n ∈ N, where

un ∈ Dx,y =

{
d(x, y), d(x, Tnx), d(y, Tn+1y),

1

2
(d(x, Tn+1y) + d(Tnx, y))

}
,

an ≥ 0 and array
∞∑
n=1

an is convergent. If A ∈ B(E) is an increasing operator and

r(A) < 1, then there exists a unique z ∈ X such that lim
n→∞

Tnz = z. Furthermore, the

sequence (xn)n∈N0 where xn = Tnxn−1, n ∈ N, converges to z for any x0 ∈ X.

Proof. Let x0 ∈ X be an arbitrary point and xn = Tnxn−1 for n ∈ N.

d(xn, xn+1) � A(un) + an

for

un ∈ Dn,n+1 =

{
d(xn−1, xn), d(xn, xn+1),

1

2
d(xn−1, xn+1)

}
.

Setting un = 1
2
d(xn−1, xn+1), we get

d(xn, xn+1) �
(
I − A

2

)−1
A

2
(d(xn−1, xn)) +

(
I − A

2

)−1
(an) .

Assuming that Bn ∈ {A,
(
I − A

2

)−1 A
2
}, obviously r(Bn) < 1 and Bn is an increasing

operator, then

d(xn, xn+1) � Bn(d(xn−1, xn)) +

(
I − A

2

)−1
(an) ,

because
(
I − A

2

)−1
(an) � an.

Continuing in the same manner, after n− 1 more steps, we get

d(xn, xn+1) �

(
n∏
i=1

Bi

)
(d(x0, x1))

+

(
I − A

2

)−1(( n∏
i=2

Bi

)
(a1) + . . .+Bn(an−1) + an

)
.

Being so, the inequality

d(xn, xm) �
m−1∑
i=n

(
Ai
(
I − A

2

)ji
2ji

)
(d(x0, x1))

+

(
I − A

2

)−1 m−1∑
i=n

(
Ai
(
I − A

2

)ki
2ki

)
(w) ,
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where 0 ≤ ji ≤ i, ji ≤ ji+1, ki ∈ {ji, ji − 1} depending of Bi, i = n,m− 1, and

w =
∞∑
n=1

an. As in the proof of Theorem 3.2.1 it follows that (xn) is a Cauchy sequence,

and lim
n→∞

xn = z for some z ∈ X.

Let us assume that for arbitrary y0 ∈ X, yn = Tnyn−1, n ∈ N, such that lim
n→∞

yn = w and

estimate d(xn, yn+1) based on

d(z, w) � d(z, xn) + d(xn, yn+1) + d(yn+1, w), n ∈ N (3.37)

For arbitrary ε� 0, choose n0 ∈ N with the property

d(xn, xm)� ε

2
, d(xn, z)�

ε

2
, d(yn, ym)� ε

2
and d(yn, w)� ε

2
,

for any m ≥ n ≥ n0. Fix n > n0. Then, d(xn, yn+1) � A(vn) + an where

vn ∈
{
d(xn−1, yn),

ε

2
,
1

2
(d(xn−1, yn+1) + d(xn, yn))

}
.

Consider that vn = d(xn−1, yn) � d(xn−1, xn) + d(xn, yn+1) + d(yn+1, yn) implies

d(xn, yn+1) � A(ε) + A(d(xn, yn+1)) + an,

along with

d(xn, yn+1) � (I − A)−1A(ε) + (I − A)−1(an).

With the assumption vn = 1
2

(d(xn−1, yn+1) + d(xn, yn)), we get

d(xn, yn+1) � A
(ε

2

)
+ A(d(xn, yn+1)) + an,

and

d(xn, yn+1) � (I − A)−1A
(ε

2

)
+ (I − A)−1(an).

With respect to previous discussion and (3.37), without depending on the choice of vn,
it follows

d(z, w) � ε+ (I − A)−1A(ε) + (I − A)−1(an),

because an � (I − A)−1(an) and (I − A)−1A
(
ε
2

)
, A
(
ε
2

)
� (I − A)−1A(ε).

However, since an → θ as n→∞, by taking ε→ θ, equality of z and w is obtained.
It remains to prove that lim

n→∞
Tnz = z.

The inequality

d(z, Tnz) � (I − A)−1
(ε

2
+ an

)
is attained in accordance with

d(z, Tn+1z) � d(z, xn) + d(xn, Tn+1z) � ε

2
+ wn,
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for

wn ∈
{
A
(ε

2

)
+ an, A (d(z, Tn+1z)) + an,(

I − A

2

)−1
A
(ε

2

)
+

(
I − A

2

)−1
(an)

}
.

Consequently, by (p2), lim
n→∞

Tnz = z.

Remark that if lim
n→∞

Tnu = u, then exists m0 ∈ N,

d(z, Tmz), d(Tnz, Tmz), d(u, Tmu), d(Tnu, Tmu)� ε

2
, (3.38)

while n,m ≥ m0. Select m > m0, and perceive

d(z, u) � d(z, Tmz) + d(Tmz, Tm+1u) + d(Tm+1u, u) � ε+ d(Tmz, Tm+1u).

In addition,

d(Tmz, Tm+1u) �


A(d(z, u)) + am, sm = d(z, u)
A
(
ε
2

)
+ am, sm ∈ {d(z, Tmz), d(u, Tm+1u)}

(I − A)−1
(
A
(
ε
2

)
+ an

)
, sm = 1

2
(d(z, Tm+1u) + d(u, Tmz))

and (3.38) allow us to determine, based on arbitrariness of ε and lim
n→∞

an = θ, u must be

equal to z, a unique point in X with the property lim
n→∞

Tnz = z.

Theorem 3.2.9. Let (X, d) be a complete cone metric space, P a normal cone with a
normal constant K and (Tn)n∈N a sequence of self-mappings on X such that

d(Tnx, Tn+1y) � A(u) + an, for all x, y ∈ X, n ∈ N,

where

u ∈ Dx,y =

{
d(x, y), d(x, Tnx), d(y, Tn+1y),

1

2
(d(x, Tn+1y) + d(Tnx, y))

}
and array

∞∑
n=1

‖an‖ is convergent. If A ∈ B(E) and K2‖A‖ < 1, then there exists a

unique z ∈ X such that lim
n→∞

Tnz = z.

Proof. Proofs goes similarly as in Theorem 3.2.3 and Theorem 3.2.8.
First, estimate ‖d(xn, xn+1)‖ according to

d(xn, xn+1) � A(un) + an,

for un ∈
{
d(xn−1, xn), d(xn, xn+1),

1
2
d(xn−1, yn+1)

}
. Denote ‖d(xn−1, xn)‖ with δn. One

of the inequalities

‖d(xn, xn+1)‖ ≤


K‖A‖δn + ‖an‖, un = d(xn−1, xn)
‖an‖

1−K‖A‖ , un = d(xn, xn+1)
1

2−K2‖A‖ (K2‖A‖δn + 2‖an‖) , un = 1
2
d(xn−1, yn+1)
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holds for any n ∈ N. For b = max
{
K‖A‖, K2‖A‖

2−K2‖A‖

}
, we get

‖d(xn, xn+1)‖ ≤ bn‖d(x0, x1) +
1

1−K‖A‖

n−1∑
i=0

bi‖an−i‖.

Consequently, xn → z, n→∞, for some z ∈ X.
If lim

n→∞
yn = w for some ω ∈ X, then for arbitrary ε � 0, as in the previous proof but

with ε
2K

estimations instead of ε
2
, we get

‖d(z, w)‖ ≤


ε+ ‖A‖ε

2
+K‖an‖, vn ∈ {d(xn−1, xn), d(yn, yn+1)}

ε+ ‖A‖ε
1−K‖A‖ + K‖an‖

1−K‖A‖ , vn = d(xn−1, yn)

ε+ K|A‖
(1−K‖A‖)

(
ε
2

+K‖an‖
)
, vn = 1

2
d(xn−1, yn+1)

Hence, z is a uniquely determined as a limit and analogously as in the proof of Theorem
3.2.8, lim

n→∞
Tnz = z.

Example 14. Let X be C[0, 1], set of real continuous functions on a closed interval [0, 1]
and P ⊆ X a cone defined with

x ∈ P ⇔ x(t) ≥ 0 for all t ∈ [0, 1].

Then, d(x, y) = |x − y|, x, y ∈ X, is a cone metric on X. If f ∈ X is chosen arbitrary,
then for 0 < L < 2, the sequence of mappings Tn : X 7→ X, n ∈ N, is defined as follows:

(Tnx) (t) =
1

n
f(t) +

t∫
0

Lx(
√
s)ds, t ∈ [0, 1], n ∈ N.

Evidently,

d(Tn+1x, Tny)(t) = | (Tn+1x) (t)− (Tny) (t)|

≤
(

1

n
− 1

n+ 1

)
|f(t)|+

t∫
0

L
∣∣x(
√
s)− y(

√
s)
∣∣ ds

=
1

n2 + n
|f(t)|+ (Ad(x, y)) (t),

where

(Ax) (t) =

t∫
0

Lx(
√
s)ds, t ∈ [0, 1],

is a bounded operator in B(X).
However, since cone P is defined as above, it follows

d(Tn+1x, Tny) � 1

n2 + n
|f |+ A(d(x, y)).

Zima proved in [130] that the spectral radius of operator A is L
2
, thus less than 1 and,

evidently, A is an increasing operator. If an = 1
n2+n
|f |, then

∞∑
n=1

an converges in X.

Hence, we may apply Theorem 3.2.8 on a sequence of mappings (Tn) and conclude that
there exists g ∈ X such that lim

n→∞
Tng = g. Notice that g will be zero function.
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3.3 Hardy-Rogers Theorem

In [64] (see also [119]), authors consider a mapping f : X 7→ X on a complete metric
space X such that for each x, y ∈ X

d(f(x), f(y)) ≤ a1d(x, y) + a2d(x, f(x)) + a3d(y, f(y)) + a4d(x, f(y)) + a5d(y, f(x)),

where ai ≥ 0, i = 1, 5. It was proved that if, additionally,
5∑
i=1

ai < 1, then f has a unique

fixed point in X and iti is known as Hardy-Rogers theorem.
Note that Hardy-Rogers theorem on metric space is a corollary of Ćirić quasi–

contraction with q =
5∑
i=1

ai < 1. But on a cone metric space we can not make this

correlation since these two vectors do not have to be comparable. Therefore, we focus
on a result of [79] where is given a generalization of this theorem on a complete cone
metric space but for a pair of self-mappings with some restraints. Assuming property
(E.A.) and weak-compatibility, Kadelburg and al. in [82] improved this result and gave
the proof of the following theorem

Theorem 3.3.1. Let (X, d) be a cone metric space and let (f, g) be a weakly compatible
pair of self-mappings on X satisfying condition (E.A). Suppose that there exist nonneg-

ative scalars ai, i = 1, 5 such that
5∑
i=1

ai < 1 and that for each x, y ∈ X,

d(g(x), g(y)) ≺ a1d(f(x), f(y)) + a2d(f(x), g(x)) + a3d(f(y), g(y)) (3.39)

+a4(d(f(x), g(y)) + a5d(f(y), g(x)).

If g(X) ⊆ f(X) and at least one of f(X) and g(X) is a complete subspace of X, then f
and g have a unique common fixed point.

Obviously, these conditions are less strict than in [79], Theorem 2.8. We will prove
the generalization of this result considering bounded linear operators Ai, i = 1, 5, instead
of scalars.

Theorem 3.3.2. Let (X, d) be a cone metric space with a solid cone P , and let (f, g) be
a weakly compatible pair of self-mappings on X satisfying condition (E.A). Suppose that
there exist positive bounded linear operators Ai ∈ B(E), i = 1, 5, such that the inequality

d(g(x), g(y)) � A1(d(f(x), f(y))) + A2(d(f(x), g(x))) + A3(d(f(y), g(y)))

+ A4(d(f(x), g(y))) + A5(d(f(y), g(x))) (3.40)

holds for all x, y ∈ X. If f(X) is a closed subspace of X or g(X) ⊆ f(X) and g(X) is
a closed subspace of X, r(A1 + A4 + A5) < 1 and one of the conditions

(i) r(A3 + A4) < 1;

(ii) r(A2 + A5) < 1;

(iii) r(A2 + A3 + A4 + A5) < 2,
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is satisfied, then f and g have a unique common fixed point.

Proof. Since f and g have the (E.A.) property, there exists a sequence (xn)n∈N ⊆ X such
that lim

n→∞
f(xn) = lim

n→∞
g(xn) = f(a) for some a ∈ X. The last conclusion follows from

the assumptions of closedness of f(X) or equivalently g(X) ⊆ f(X).
Considering the distance between f(a) and g(a),

d(f(a), g(a)) � d(f(a), g(xn)) + d(g(xn), g(a)). (3.41)

For arbitrary c� θ and ε� θ, choose n0 ∈ N such that

d(g(xn), f(a))� c, d(g(xn), f(a))� ε

5
and d(f(xn), f(a))� ε

5
, n ≥ n0. (3.42)

Let us estimate d(g(xn), g(a)), n > n0 under the assumption (i).

d(g(xn), g(a)) � A1(d(f(xn), f(a))) + A2(d(f(xn), g(xn))) + A3(d(f(a), g(a)))

+A4(d(f(xn), g(a))) + A5(d(f(a), g(xn)))

� (A1 + 2A2 + A4 + A5)
(ε

5

)
+ (A3 + A4)(d(g(a), f(a))).

By (3.41) and (3.42), now follows

d(g(a), f(a)) � c+ (A1 + 2A2 + A4 + A5)(
ε

5
) + (A3 + A4)(d(g(a), f(a))).

This inequality holds for any c� θ leading to

d(g(a), f(a)) � (A3 + A4)(d(g(a), f(a))).

But (i) implies that I − A3 − A4 is an invertible operator, and (I − A3 − A4)
−1 is a

positive operator, and taking that into account g(a) and f(a) coincide.
Obviously, if (3.40) is satisfied, then

d(g(y), g(x)) � A1(d(f(x), f(y))) + A2(d(f(y), g(y))) + A3(d(f(x), g(x)))

+A4(d(f(y), g(x))) + A5(d(f(x), g(y))) (3.43)

and if we assume that (ii) holds, same as in the first case, g(a) = f(a).
Combining (3.40) and (3.41), we conclude that

d(g(x), g(y)) � A1(d(f(x), f(y))) +
A2 + A3

2
(d(f(x), g(x)) + d(f(y), g(y)))

+
A4 + A5

2
(d(f(x), g(y)) + d(f(y), g(x)))

holds for each x, y ∈ X. If r(A2+A3+A4+A5) < 2, then again, after some consideration,
we get g(a) = f(a).
Furthermore, f and g are weakly compatible, so g(g(a)) = g(f(a)) = f(g(a)) = f(f(a)).
On the other hand,

d(g(a), g(g(a))) � A1(d(f(a), f(g(a)))) + A2(d(f(a), g(a))) + A3(d(f(g(a)), g(g(a))))

+A4(d(f(a), g(g(a)))) + A5(d(f(g(a)), g(a)))

� (A1 + A4 + A5)(d(g(a), g(g(a)))).



3.3. Hardy-Rogers Theorem 82

Analogously, (I −A1−A4−A5) is an invertible operator, with a positive inverse, hence
g(g(a)) = g(a). Therefore, g(a) is a common fixed point for the pair of mappings (f, g).
If b is a common fixed point of f and g, then

d(g(a), b) = d(g(g(a)), g(b)) � (A1 + A4 + A5)(d(g(a), b)),

and additionally b = g(a). Further, g(a) is the unique common fixed point of f and
g.

Evidently, this theorem generalizes Theorem 3.3.1 and the results in [82] by taking
Ai = aiI, i = 1, 5, but instead of < we have ≤ and one of the nonnegative scalars a2 and
a3 can be chosen voluntarily if a1 + a4 + a5 < 1 and a3 < 1 − a4 or a2 < 1 − a5. Also,
instead of completeness condition, it is enough to assume that f(X) or g(X) is a closed
subspace of X.



Chapter 4

Comparison between metric fixed
point and Perov type results

When publishing some scientific results, the most important question is the proof of
novelty. In the time of mass publishing and overpowering quantity over quality, it is
significant to pay attention to this kind of problem and to substantiate originality of
results presented in previous chapters.

Some links between cone metric and metrics spaces are made in both solid and normal
case. The question is could results on cone metric space be derived from well-known
metric fixed point theorems via any of those methods such as scalarization, renormization
and so on.

We will show that existence of a fixed point in Perov theorem follows from Banach
fixed point theorem but even though, estimations presented in Perov theorem do not
and they are most valuable for applications. When discussing cone metric space, we will
show that, thanks to operatorial characteristics of A, this do not hold and our Perov type
results are independent from similar metric or cone metric (comstant type) theorems.

Since attempts of obtaining cone metric from metric are different in the solid and
normal case, this chapter will be divided in two sections while the first section will also
deal with Perov theorem on generalized metric space.

4.1 Perov theorem and normal cone metric space

First part of this section is dedicated to Perov theorem on generalized metric space and
how it is related to Banach fixed point theorem. Further on, we focus on Perov type
theorems on a normal cone metric space having in mind behavior of operatorial constant
A through all made renormizations. Many efforts are made in the attempt of reduction
any cone metric space to a metric space. There were several papers ([15, 52, 73]) studying
relations between cone metric spaces in general, and especially normal cone metric spaces,
on one, and metric spaces on the other side. Recent results in cone metric fixed point
theory established some relation between b-metric spaces and normal cone metric spaces.

Definition 4.1.1. Let X be a nonempty set and s ≥ 1 be a given real number. A
mapping d : X ×X → [0,+∞) is said to be a b-metric if for all x, y, z ∈ X the following

83
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conditions are satisfied:

(b1) d(x, y) = 0 if and only if x = y;

(b2) d(x, y) = d(y, x);

(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space (with constant s).

Definitions of Cauchy and convergent sequence in a b-metric space, as well as com-
pleteness, go analogously as in a metric space.

Let (X, d) be a cone metric space, P a normal cone with a normal constant K. Define
a function D : X ×X 7→ R,

D(x, y) = ‖d(x, y)‖, x, y ∈ X (4.1)

Theorem 4.1.2. A function D defined in (4.1) is a b-metric on X with a constant K.

Proof. Let x, y, z ∈ X be arbitrary points. From the definition of norm and (d1) it easily
follows that (b1) holds. D is also a symmetric function since it directly follows from the
symmetry of the norm. From the fact that d is a metric on X, (d3) and since (X, d) is a
normal cone metric space, we have

D(x, y) = ‖d(x, y)‖ ≤ K (‖d(x, z)‖+ ‖d(z, y)‖) = K (D(x, z) +D(z, y)) .

Thus, (X,D) is a b-metric space.

If the normal constant K is equal to 1, then (X,D) is a metric space.
Let us recall, if (X, d) is a complete normal cone metric space, (xn) is Cauchy se-

quence in (X, d) if and only if lim
n,m→∞

‖d(xn, xm)‖ = 0 and lim
n→∞

xn = x if and only if

lim
n→∞

‖d(xn, x)‖ = 0. Therefore, we may state the following corollary.

Theorem 4.1.3. (X, d) is a complete cone metric space, P a normal cone with a normal
constant K and D an b-metric defined as in (4.1) if and only if (X,D) is a complete
b-metric space.

Proof. Choose an arbitrary D-Cauchy sequence (xn) ⊆ (X,D). From the definition of
metric D, we may conclude that

lim
n,m→∞

D(xn, xm) = lim
n,m→∞

‖d(xn, xm)‖ = 0,

thus lim
n,m→∞

d(xn, xm) = θ, i.e., (xn) is a d-Cauchy sequence. There exists some x ∈ X
such that lim

n→∞
xn = x in the sense of cone metric d. Observe that, since P is a normal

cone,
lim
n→∞

xn = x ⇔ lim
n→∞

d(xn, x) = θ ⇔ lim
n→∞

D(xn, x) = 0.

Therefore, (xn) converges to x with respect to b-metric D and, since (xn) was an arbitrary
Cauchy sequence in (X,D), (X,D) is a complete b-metric space.
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Since the previous comments are derived on several equivalences, we may conclude
that the statement of the theorem could include if and only if, i.e., (X, d) is complete
metric space if and only if (X,D) is complete.

We will give another proof of the generalization of Perov fixed point theorem in the
setting of normal cone metric space, only for the existence part.

Theorem 4.1.4. Let (X, d) be a complete cone metric space, P a normal cone with a
normal constant K and f : X 7→ X a self-mapping. If there exists an operator A ∈ B(E)
such that K‖A‖ < 1, for all x, y ∈ X,

d(f(x), f(y)) � A(d(x, y)), (4.2)

then f has a unique fixed point in X.

Proof. From the condition (4.2) and the fact that P is a normal cone, it proceeds

D(f(x), f(y)) = ‖d(f(x), f(y))‖ ≤ K‖A(d(x, y))‖ ≤ K‖A‖D(x, y), x, y ∈ X,

and f is a contraction on a b-metric space and the existence of an unique fixed point
follows by the generalization of Banach fixed point theorem in b-metric space presented
in [38].

Observe that we can obtain the same result from Banach fixed point theorem (on
complete metric spaces) by renorming, as presented in [59].

Theorem 4.1.5. Let (X, d) be a cone metric space, P ⊆ E a normal cone with a normal
constant K where (E, ‖‖) is a Banach space. Then:

(i) A function ‖ · ‖1 : E 7→ R defined with

‖x‖1 = inf{‖u‖ | x � u}+ inf{‖v‖ | v � x}, x ∈ E,

is a norm on E.

(ii) Norms ‖ · ‖ and ‖ · ‖1 are equivalent norms on X.

(iii) If we observe P as a cone in Banach space (E, ‖ · ‖1), then (X, d) is a normal cone
metric space with a normal constant equal to 1.

Proof. (i) Obviously, ‖x‖1 ≥ 0 and

‖x‖1 = 0 ⇔ (∀ ε > 0) (∃ v � x � u) ‖u‖+ ‖v‖ < ε.

Observing only ε = 1
n

and conjoint un, vn, n ∈ N, it follows lim
n→∞

un = lim
n→∞

vn = θ since

policemen lemma holds in normal cone metric spaces, x = θ. Trivially, ‖θ‖1 = 0.
If q ∈ R \ {0} is arbitrary, then

‖qx‖1 = inf{‖u‖ | qx � u}+ inf{‖v‖ | v � qx}
= inf{‖qu‖ | x � u}+ inf{‖qv‖ | v � x}
= |q|‖x‖1.
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If q = 0, then ‖0x‖1 = ‖θ‖1 = 0 = 0‖x‖1.
For some x, y ∈ X, select ux � x � vx and uy � y � vy, then

‖x+ y‖1 ≤ ‖ux + uy‖+ ‖vx + vy‖ ≤ ‖ux‖+ ‖uy‖+ ‖vx‖+ ‖vy‖,

and by taking an infimum for all such u and v, it points to the triangle inequality
for ‖ · ‖1. (ii) It is easy to see that ‖x‖1 ≤ 2‖x‖. Assuming that there exist no m
such that m‖x‖ ≤ ‖x‖1 for all x, we can define a sequence (xn) of vectors with a
norm 1 such that 1

n
‖xn‖ > ‖xn‖1, n ∈ N. Notice some un ≤ xn ≤ vn such that

1
n
‖xn‖ > ‖un‖ + ‖vn‖. As a consequence, since we are discussing normal cone metric,

lim
n→∞

‖un‖ = lim
n→∞

‖vn‖ = lim
n→∞

‖xn‖ = θ gives us that (xn) tends to θ, as n → ∞, which

contradicts our assumption regarding norm.

(iii) Let x, y ∈ E be such that θ � x � y. Therefore, {u | y � u} ⊆ {u | x � u} and
‖x‖1 ≤ ‖y‖1. The normal constant is never less than 1, so K = 1.

The equivalence of the norms allows us to determine the relation between ‖A‖ and
‖A‖1.

Remark 4.1.6. Based on the previously made observations regarding renorminization
of a normal cone with a normal constant K and Theorem 2.1.6, we may conclude that
existence of the unique fixed point Perov type contractions (including extended and
more general contractive conditions) on normal cone metric spaces could be derived
from analogous results on metric spaces.

Focusing on just first two statements of Perov theorem, we may state the following
result:

Theorem 4.1.7. Perov theorem (i) is a consequence of a Banach fixed point theorem.

Proof. Notice that generalized metric space introduced by Perov is a type of normal cone
metric space.

If P = {x = (x1, x2, . . . , xn) ∈ Rn | xi ≥ 0, i = 1, n}, then P evidently determines
a cone in a Banach space Rn with supremum norm, ‖x‖ = max

i=1n
|xi|, and x ≤ y if and

only if xi ≤ yi, i = 1, n. Since θ ≤ x ≤ y, for θ = (0, 0, . . . , 0), x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn), implies 0 ≤ xi ≤ yi, i = 1, n, then ‖x‖ = max

i=1,n
|xi| ≤ max

i=1,n
|yi| = ‖y‖

and P is a normal cone with a normal constant K = 1.
By taking into the account results of Theorem 4.1.4, it follows that for any generalized

metric space (X, d) in the sense of Perov, the appropriate b-metric space (X,D) is a
metric space.

Assume that the requirements of Perov theorem are fulfilled for some A ∈Mm,m(R+)
such that An → Θm, as n → ∞. Since a matrix A converges to the zero matrix, then
‖An‖ → 0, n→∞. Choose n0 ∈ N such that ‖An‖ < 1 for any n ≥ n0. For such n,

d(fn(x), fny) � An(d(x, y)), x, y ∈ Rm,

and
D(fn(x), fny) ≤ ‖An‖D(x, y), x, y ∈ Rm. (4.3)
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If we apply Banach contraction principle for fn and q = ‖An‖ < 1, fn has a unique
fixed point z in X. Since fn(f(z)) = f(z), it must be f(z) = z. If fu = u for some
u ∈ X, then fnu = u, so u = z.

Hence, Perov theorem is a direct consequence of Banach contraction principle.
It is easy to observe that the iterative sequence (xn) is a Cauchy sequence, thus

convergent, and since (fnk(x))k∈N converges to z by Banach fixed point theorem, (ii)
holds.

Remark 4.1.8. On the other hand, if n = 1, then generalized metric space is a metric
space and a positive matrix A = [q] tends to zero if and only if q < 1. Thus, Banach
contraction principle is a Perov fixed point theorem for n = 1. However, remarks re-
garding distance presented in (iii) and (iv) (easily observed if we take g = f) could not
be derived directly from Banach contraction principle since the inequality (4.3) do not
imply (iii).

Example 15. Define a mapping f : R2 7→ R2 with f(x) = (x1
2

+ x2,
x2
2

), x = (x1, x2) ∈
R2. Let

A =

[
1
2

1
0 1

2

]
,

then lim
n→∞

An = Θ2 and

d(f(x), f(y)) � A(d(x, y)), x, y ∈ R2.

Since ‖A‖ = 1, D(f(x), f(y)) ≤ D(x, y) and if x = (0, 0), y = (0, 1), it follows that f is
not a contraction in (R2, D), but it is a Perov contraction and based on Perov theorem
it possesses a unique fixed point (0, 0).

From the proof of Theorem 4.1.7 and the previous example, we may notice correlation
between Perov theorem and well-known consequence of Banach theorem.

Corollary 4.1.9. Let (X, d) be a complete metric space, f : X 7→ X a mapping. If

d(fn(x), fn(y)) ≤ qd(x, y), x, y ∈ X,

for some n ∈ N and q ∈ [0, 1), then f has a unique fixed point in X.

The following example shows that Perov type theorems including requirement r(A) <
1 could not be derived directly from Banach theorem. For additional comments see
Section 5.1.

Example 16. Let c0 be the set containing all sequences of real numbers convergent to
zero equipped with supremum norm ‖‖∞ and define A : E 7→ E with

A(x) = A(x1, x2, x3, . . . , xn, . . .) = (0, x3,
x4
2
, . . . ,

xn+1

2
, . . .), x = (xn) ∈ c0.

Operator A is linear on Banach space (c0, ‖‖∞) and also bounded since ‖Ax‖∞ ≤ ‖x‖∞.
By choosing e3 = (0, 0, 1, 0, . . . , 0, . . .) ∈ c0, it follows ‖A‖ = 1 by taking into account
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previous inequality.
For any m ∈ N,

Am(x) = Am(x1, x2, x3, . . .) = (0,
xm+2

2m−1
,
xm+3

2m
, . . .), x = (xn) ∈ c0,

therefore, observing em+2 ∈ c0 with all zeros except one on (m+2)-nd place (i.e., (em+2)n
= δn,m+2, n ∈ N), we obtain ‖Am‖ = 1

2m−1 . Spectral radius of A is 1
2
, A is a positive

operator, so all the conditions of Theorem 2.1 are satisfied since

d(A(x), A(y)) � A(d(x, y)), x, t ∈ c0,

where ≤ is usual partial ordering on c0, i.e. xn ≤ yn, n ∈ N, determining a normal cone
and d : c0 × c0 7→ c0 defined by d(x, y)(n) = |x(n)− y(n)|, n ∈ N is a cone metric.
On the other hand, since normal constant and ‖A‖ are equal to 1, norm inequality
implies

D(A(x), A(y)) ≤ D(x, y),

thus Banach theorem is not applicable (let x = θ and y = e3).

We may also assume that K = 1 due to the renormization and the invariance of
spectral radius in renormized space. It is important to notice that r(A) < 1 implies
‖An‖ < 1 starting from some n ∈ N, so instead of Banach theorem, we should consider
Consequence 4.1.9.

If the inequality (2.1) holds, then, since A is an increasing operator,

d(fn(x), fn(y)) � An(d(x, y)),

thus,
D(fn(x), fn(y)) ≤ ‖An‖(d(x, y)),

and existence and uniqueness of a fixed point for a mapping f follows directly from
Corollary 4.1.9.

In Example 15 f 3 is a contraction in induced metric space, and in Example 16 f 2.
As presented in [33], the requirement that A contains only positive entries, as stated

in Perov theorem, could be removed thanks to the normality of the defined cone in gen-
eralized metric space. This could be explained also by the fact that, from the definition
of matrix norm, only absolute value of matrix entries has impact on the norm value. So
Perov type theorems are applicable, regardless of the positivity of matrix elements, if all
entries are between −1 and 1. Perov fixed point theorem found application in solving
various systems of differential equations. But, in some cases like [121], it is possible to
replace it with the Corollary 4.1.9. The following example shows possible application
of Theorem 2.6.1 in solving integral equations and obtained results improve previous
results regarding existence and uniqueness of this type of equations.

Example 17. Let x ∈ C[0, 1] and K ∈ C ([0, 1]× [0, 1]× R), where C([0, 1]) is the set
of all continuous functions f : [0, 1] 7→ R. Consider an integral equation

x(t) =

∫ t

0

K(t, s, x(s))ds, t ∈ [0, 1]. (4.4)
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Define on C[0, 1] supremum norm, ‖x‖ = sup
0≤t≤1

|x(t)|, and a mapping d : C[0, 1] ×

C[0, 1] 7→ C[0, 1] with
d(x, y) = |x− y|, x, y ∈ C[0, 1],

where |x − y|(t) = |(x − y)(t)| = |x(t) − y(t)|, t ∈ [0, 1]. It is easy to check that
(C[0, 1], d) is a cone metric space while ordering on C[0, 1] is induced by a solid cone
P = {x ∈ C[0, 1] | x(t) ≥ 0, t ∈ [0, 1]} ⊆ C[0, 1]. Assume that there exists some

nonnegative function α : [0, 1]× [0, 1] 7→ R such that

1∫
0

α(t, s)ds ≤ 1, t ∈ [0, 1],

and

|K(t, s, x(s))−K(t, s, y(s))| ≤ α(t, s)A(|x− y|)(t), x, y ∈ C[0, 1], t ∈ [0, 1],

for some positive and increasing operator A : C[0, 1] 7→ C[0, 1] such that lim
n→∞

An(x) = θ,

x ∈ C[0, 1]. (θ is a zero function with a domain [0, 1])

Then a mapping f : C[0, 1] 7→ C[0, 1] defined with a f(x)(t) =
t∫
0

K(t, s, x(s))ds, x ∈

C[0, 1], t ∈ [0, 1], has a unique fixed point in C[0, 1]. Therefore, integral equation (4.4)
has a unique solution.

This assertion would follow as a direct consequence of Theorem 2.6.1 since, for any
t ∈ [0, 1],

d(F (x), F (y))(t) = |
t∫

0

(K(t, s, x(s))−K(t, s, y(s))) ds|

≤
t∫

0

|K(t, s, x(s))−K(t, s, y(s))|ds

≤
t∫

0

α(t, s)A(|x− y|)(t)ds

≤ A(|x− y|)(t)
1∫

0

α(t, s)ds

≤ A(|x− y|)(t),

indicating d(F (x), F (y)) � A(d(x, y)).
By adding this inequality to the previous assumptions, all conditions of Theorem

2.6.1 are fulfilled. A mapping F has a unique fixed point in C[0, 1] and every iterative
sequence converges to the fixed point which also represents a unique solution of integral
equation (4.4).
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Emphasise that this requirements are less strict than usual ones assuming that

|K(t, s, x)−K(t, s, y)| ≤ q|x− y|, for some q ∈ [0, 1),

which is obtained for α(t, s) = 1, t, s ∈ [0, 1] and A(x) = qx, x ∈ C[0, 1].

4.2 Du’s scalarization method

Solid cone metric space can not be renormized as presented in Section 4.1 since there is
no link between partial ordering and defined norm. In other words, x � y do not lead
to any general relation among ‖x‖ and ‖y‖. The problem of equivalence of solid cone
metric spaces and metric spaces is extensively researched topic, but just few of those
presented significant result ([12, 15, ?, 47]).

Implementation of those scalarizations led to devaluation of many published results
on cone metric spaces since it is shown that they are equivalent to appropriate metric
theorems. That is why this section is important in emphasising novelty of results pre-
sented in this dissertation and its independence from, if existing, some similar metric
(cone metric) theorems.

Among different approaches, we will focus on Du’s scalarization method.
Du ([46]) studied the equivalence of vectorial versions of fixed point theorems in

generalized cone metric spaces and scalar versions of fixed point theorems in (general)
metric spaces (in usual sense). He has shown that the Banach contraction principles in
general metric spaces and in TVS-cone metric spaces are equivalent. His theorems also
extend some results in Huang and Zhang ([67]), Rezapour and Hamlbarani ([117]) and
others.

We state Theorem 2.1 of [46] regarding metrizability of solid cone metric space.

Theorem 4.2.1. Let (X, d) be a solid cone metric space, e ∈ intP and ξe is defined by

ξe(u) = inf{q ∈ R | u ∈ qe− P},

for each u ∈ E. Then dξ = ξe ◦ d is a metric on X .

Let f : X 7→ X be such that Banach contractive condition holds for some q ∈ (0, 1).
Then, applying Lemma 1.1 of [46], we have

dξ(f(x), f(y)) ≤ qdξ(x, y), holds for any x, y ∈ X. (4.5)

Hence, generalizations of Banach contraction principle directly follows as a consequence
of Banach theorem on metric space. However, if f satisfies (2.47), restricted with an
additional conditions for A, we cannot conclude that there exists some q ∈ (0, 1) such
that (4.5) is satisfied, and Theorem 2.1.3 could not be derived from Banach theorem.
Despite that, Banach fixed point theorem on cone metric space is equivalent to classical
result of Banach. Analogously, Ćirić’s quasi-contraction of Perov type is not equivalent
of its metric version and, along with Fisher quasi-contraction, improves and extends
results of [39], [119].
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In a similar manner we may discuss Theorem 2.1.10 as a local version of Banach
theorem.

Let T : X 7→ X be such that there exists a point z ∈ X for which O(z) is complete,
and a q ∈ (0, 1) such that

d(Tx, Ty) ≤ qd(x, y) holds for any x, y = T (x) ∈ O(z). (4.6)

Then, applying Lemma 1.1 of [46], we have

dξ(Tx, Ty) ≤ qdξ(x, y), holds for any x, y = T (x) ∈ O(z). (4.7)

Hence, Theorem 1 of [14] directly follows from Park’s result by Theorem 2 of [100].
However, if T satisfies (2.9), restricted with a linear bounded mapping, we cannot con-
clude that there exists some q ∈ (0, 1) such that (4.7) is satisfied, and so Theorem 2.1.9
cannot be derived from Park’s result. Therefore Theorem 2.1.9 indeed improves the
corresponding result of [100].

Deducing related conclusions for other Perov type results of this thesis, we see that
they could not originate from some metric reductions. For some more recent results
see [76], [92], [91]. Another approach to this problem is pointing out to some examples
like Example 16 which show that Theorem 2.1.3 can be applied even in the case when
Banach theorem (equivalently on cone metric space) can not. In order to illustrate that
difference between ours and some well-known metric and cone metric results, we present
several examples in the Chapter 5.



Chapter 5

Applications

Expressing importance of some research study is, preferably, connected with a wide range
of possible applications. Throughout whole manuscript appear different examples having
two main purposes. One is evidently defining area of application, but the second one
concerns independence from similar conclusions in that area of expertise. In order to
achieve that goal, separately from other chapters, we collect some examples that should
speak in favor deductions made in Section 4.2.

Famous Serbian mathematician, Kurepa said that every mathematical problem could
be reduced on some fixed point problem. This is just one way to express influence this
branch of mathematics. It appears that one of the reasons why is hidden in huge class of
applications. The accent is on solving equations, including differential, integral, operator
and so on, along with systems and some delay problems.

Regarding theorems and corollaries throughout this manuscript, it appears that they
can be applied even in the case when regular fixed point theorems with contractive
constant could not. Valuable part of those statements are estimations regarding distance
between fixed point, sequence of iterative approximation or diameter of an orbit, etc.

First section contain several integral equations which apply different Perov type the-
orems even though can not be solved as usual. Well-posedness and Ulam’s stability of
some functional equations are the topic of the last section concerning use of Perov type
contraction in some recently published papers. Wide range of application is amplified
with several examples throughout various chapters such as Examples 8,11,14, 16 and 17.

5.1 Integral equations

Etimations obtained by Perov theorem and generalized metric are better than by using
usual metric spaces and some well-known theorems. In [108] coupled fixed point problem
on Banach space was analyzed and, implementation of various metric and vector-valued
metric in the sense of Perov, lead to the conclusion that results obtained by Perov
theorem are better and unify other results. The comparison is made for Schauder,
Krasnoselskii, Leray-Schauder and Perov theorem. We will discuss results obtained by
Banach fixed point theorem and compare them in the case of metric space.

Example 18. If (X, d) is a complete metric space and Ti : X×X 7→ X, i = 1, 2, solution

92
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of a system

T1(x, y) = x

T2(x, y) = y, (5.1)

is a fixed point of a mapping T : X ×X 7→ X ×X defined with

T (x, y) = (T1(x, y), T2(x, y)) , x, y ∈ X.

To apply Banach theorem, T should be a contraction on X ×X. Let D be a metric on
X ×X induced by d, then

D(T (x, y), T (u, v)) ≤ qD((x, y), (u, v)), (x, y), (u, v) ∈ X ×X,

for some q ∈ (0, 1).
If D((x, y), (u, v)) = d(x, y) + d(u, v), (x, y), (u, v) ∈ X ×X, then

d(T1(x, y), T1(u, v)) + d(T2(x, y), T2(u, v)) ≤ q(d(x, y) + d(u, v)), (5.2)

for any (x, y), (u, v) ∈ X ×X, because of

d(Ti(x, y), Ti(u, v)) ≤ q

2
(d(x, y) + d(u, v)), i = 1, 2, (5.3)

holds for any (x, y), (u, v) ∈ X ×X.
On the other hand, if Perov theorem would be applied, T1 and T2 should be such that

d(Ti(x, y), Ti(u, v)) ≤ aid(x, u) + bid(y, v), (x, y), (u, v) ∈ X ×X, i = 1, 2,

for some nonnegative ai, bi ≥ 0, i = 1, 2, and a matrix

A =

[
a1 b1
a2 b2

]
convergent to zero. This means that r(A) < 1 or, equivalently,

a1 + b2 +
√
−2a1b2 + 4a2b1 + a12 + b2

2 < 2.

Considering (5.3), max{a1, a2}, max{b1, b2} should be less than 1
2
, or in view of (5.2),

max{a1, a2}+ max{b1, b2} < 1. Anyway, this result is more strict than r(A) < 1.

If

A =

[
2
3

1
9

1
9

2
3

]
,

then r(A) = 7
9
, but neither of the inequalities (5.2) and (5.3) is satisfied.

Observe that this problem could characterize as common fixed point problem. Let
f(x, y) = (T1(x, y), y) and g(x, y) = (x, T2(x, y)), x, y ∈ X.
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Example 19. Let (Xi, di), i = 1,m be some complete metric spaces and define a gen-

eralized metric d on their Cartesian product X =
m∏
i=1

Xi with

d(x, y) =


d1(x1, y1)
d2(x2, y2)

...
dm(xm, ym)

 ,
for x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ X. As previously discussed, (X, d) is, as
generalized metric space, also a normal cone metric space with a normal constant K = 1.
Let (Y, τ) be a Hausdorff topological space and f = (f1, f2) : X × Y 7→ X × Y an
operator.Theorem 2.1 of [121] states that if f is continuous, (Y, τ) has a fixed point

property (i.e., every continuous mapping g : Y 7→ Y has a fixed point) and there exists
a matrix S ∈ Rm×m convergent to zero matrix such that

d(f1(u, y), f1(v, y)) ≤ S(d(u, v)), u, v ∈ X, y ∈ Y, (5.4)

then f has a fixed point. Uniqueness is not guaranteed because of contractive condition
based on the first coordinate.
Instead of using Perov theorem, as presented in [121], observe that, since Sn → Θ,
n → ∞, then there exists some n ∈ N such that ‖Sn‖ = q < 1, where assumed norm is
the supremum norm. For such n, (5.4) holds and

d(fn1 (u, y), fn1 (v, y)) ≤ Sn (d(u, v)) , u, v ∈ X, y ∈ Y,

so
d∞(fn1 (u, y), fn1 (v, y)) ≤ qd∞(u, v), u, v ∈ X, y ∈ Y,

where d∞ : X ×X 7→ R is a maximum metric defined with

d(u, v) = max
i=1,m

di(ui, vi), u, v ∈ X.

Hence, Consequence 4.1.9 guarantees unique fixed point z of a mapping fn1 (, y) : X 7→ X
for any y ∈ Y . As in the proof of Theorem 4.1.7, z is also unique fixed point of
f1(, y) : X 7→ X for a fixed y ∈ Y . The rest of the proof would follow analogously as in
[121].
As stated in this paper, Y could be any compact convex subset of a Banach space. This
results is applied in solving systems of functional-differential equations such as:

x(t) =

∫ 1

0

K(t, s, x(s), y(s))ds+ g(t), t ∈ [0, 1],

y(t) =

∫ 1

0

H(t, s, x(s), y(s), y(y(s)))ds, t ∈ [0, 1],

where x ∈ X and y ∈ Y , K ∈ C ([0, 1]× [0, 1]× Rm × [0, 1],Rm), g ∈ C ([0, 1],Rm) and
H ∈ C ([0, 1]× [0, 1]× Rm × [0, 1]× [0, 1],R),
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Under assumptions that codomain of H is contained in [0, 1], that H is a first coordi-
nate Lipschitzian mapping with a constant L and K is a Perov generalized contraction,

this system has at least one solution inX×Y forX = C([0, 1],Rm) =
m∏
i=1

Xi, Xi = C[0, 1],

i = 1,m and Y set of all Lipschitzian mappings on C([0, 1], [0, 1]) with a constant L. Ob-
serve that we could not use Banach theorem instead of Perov to obtain this conclusion
due to the contractive condition for K.

Similar class of integral equations has already appeared in Example 14 but as a
common fixed point problem for the sequence of mappings. Here it is stated in order
to show one more significant application of Perov type fixed point theorem although
Banach theorem forces some other conclusions.

Example 20. Let E be C[0, 1] with supremum norm and usually defined cone P ⊆ E,
X = E and metric d(x, y) = |x− y|, x, y ∈ X, a cone metric on X. In the first part we
deal with solving integral equation∫ t

0

x(
√
t)dt = x(t), t ∈ [0, 1]

. Define, f, A : X 7→ X with

f(x)(t) = A(x)(t) =

∫ t

0

x(
√
t)dt t ∈ [0, 1].

Operator A is increasing, bounded and linear with the spectral radius 1
2

and

d(f(x), f(y)) = |
∫ t

0

(
x(
√
t)− y(

√
t)
)
dx|

≤
∫ t

0

|x(
√
t)− y(

√
t)|dx

= A(d(x, y)).

Theorem 2.1.3 guarantees existence and uniqueness of fixed point. Despite of that, if D
is a metric arising from norm, x(t) = 2, y(t) = 0, t ∈ [0, 1], then

D(f(x), f(y)) = 2 = D(x, y),

meaning that f is not a contraction.

This integral equation can be redefined by choosing some g ∈ X in a way that

g(t) +

∫ t

0

x(
√
t)dt = x(t), t ∈ [0, 1],

or depending on some constant L ∈ (0, 2)

g(t) +

∫ t

0

2

L
x(
√
t)dt = x(t), t ∈ [0, 1].

Definition of A implicates that r(A) = 2
L

.
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5.2 Ulam’s stability

Polish mathematician Stanislaw Ulam, posed in 1940 a question concerning the stability
of group homomorphisms. However, that question was the beginning of this stability
problem for functional equations that is in the focus of research last decades. One year
later, D. H. Hyers ([68]) made the first significant breakthrough. He gave a partially af-
firmative answer to the question of Ulam for additive mappings on Banach space. Since
then, a large number of papers have been published in connection with various general-
izations of Ulams problem and Hyerss theorem. Almost forty years after, in 1978., T. M.
Rassias ([115]) made first bigger progress. He succeeded in extending Hyerss theorem
for mappings between Banach spaces by considering an unbounded Cauchy difference
subject to a continuity condition upon the mapping. He was the first to prove the sta-
bility of the linear mapping and to initiate research in this field. The influence of all
three mathematicians was immeasurable, and that is why proposed stability problem is
known as Ulam-Hyers-Rassias stability, sometimes in different arrangement, or Ulam’s
stability.

Ulam observed δ-homomorphism between two groups G1 and G2, assuming that G2

is equipped with metric d, and a mapping f : G1 7→ G2 such that, for all x, y ∈ G1,

d(f(xy), f(x)f(y)) ≤ δ.

The question was which assumptions should be forced on f if the last inequality proceeds
existence of some homomorphism close to f .

However, stability question applies on functional and differential equations (including
more variables and differential equations with a delay). In order to discuss application
of Perov type result, we will skip preliminaries regarding metric space, and pass along
to the cone metric and accordingly introduced generalization of Ulam’s stability.

Definition 5.2.1. ([120]) Let (X, d) and (Y, ρ) be two cone metric spaces, f, g : X 7→ Y
mappings. The coincidence equation f(x) = g(x) is Ulam’s stable if there exists a linear
increasing operator ψ : E 7→ E such that for any ε � θ and each x fulfilling the
inequality ρ(f(x), g(x)) � ε, exists some solution z of the coincidence equation such that
d(x, z) � ψ(ε).

Regarding this property, original and important is ψ(x) = λx, for some positive λ.
Particular case of the coincidence equation is fixed point problem for X = Y , choosing
g(x) = x, x ∈ X.

Definition 5.2.2. Let (X, d) be a solid cone metric space, f : X 7→ X and ψ : P → P a
nondecreasing function such that ψ(θ) = θ. The equation f(x) = x is Ulam’s stable with
respect to ψ if, for any ε� θ, and y such that d(f(y), y) � ε there exists some solution
z of this equation such that

d(z, y) � ψ(ε).

Theorem 5.2.3. If (X, d) is a solid cone metric space and a mapping f : X 7→ X
satisfies condition (2.1) for some increasing operator A ∈ B(E) with spectral radius less
than 1, than the equation f(x) = x is Ulam’s stable.
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Proof. Due to Theorem 2.1.3, f has a unique fixed point z ∈ X. Accordingly,

d(x, z) ≤ d(x, f(x)) + d(f(x), f(z))

≤ d(x, f(x)) + A(d(x, z))

≤ (I − A)−1(ε).

Taking ψ = (I − A)−1, since it is nondecreasing linear function, the equation is Ulam’s
stable.

Theorem 5.2.4. If (X, d) is a solid cone metric space and a continuous mapping f :
X 7→ X satisfies condition (2.1) for some increasing operator A : P 7→ P such that
lim
n→∞

An(e) = θ, for any e ∈ P , than the equation f(x) = x is Ulam’s stable.

Proof. In order to estimate d(x, z), where z is a unique fixed point guaranteed by The-
orem 2.6.1, choose arbitrary ε and n ∈ N such that An(d(x, z)) � (I − A)−1(ε).
Having in mind (2.1),

d(x, z) ≤ d(x, fn(x)) + d(fn(x), fn(z))

≤ (I − An)(I − A)−1(d(x, f(x))) + An(d(x, z))

≤ 2(I − A)−1(ε).

Certainly, this implies Ulam’s stability.

Concerning recent results in this area ([17],[28]), there are obvious tendencies to
incorporate fixed points results and, in that way, obtain Ulam’s stability of functional,
operator, differential or integral equations of higher order or with several variables. Many
of those results are obtainable from Perov type theorems included in this thesis and
without any extensive proof or complicated proof approach despite of what presented in
[27].

Theorem 5.2.5. Let S be a nonempty set, let (X, d) be a complete metric space, k ∈ N,
fi : S 7→ S, Li : S → R+, i = 1, k, and Λ : R+

S 7→ R+
S given by

(Λ(δ)) (t) =
k∑
i=1

Li(t)δ(fi(t)), t ∈ S. (5.5)

If operator T : XS 7→ XS satisfying the inequality

∆(T (u), T (v))(t) ≤ Λ(∆(u, v))(t), u, v ∈ XS, t ∈ S,

and functions g ∈ XS and ε ∈ RS such that

∆(T (g), g)(t) ≤ ε(t), t ∈ R+,

and
∞∑
n=1

Λn(ε(t))σ(t) <∞, t ∈ S,

then for every t ∈ S the limit lim
n→∞

(T n(g))(t) = f(t) exists and the function f ∈ XS

defined in this way, is a unique fixed point of T with

∆(g, f)(t) ≤ σ(t), t ∈ S
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Proof. Observe that ∆ :
(
XS
)2 7→ rS+ defined with

∆(u, v)(t) = d(u(t), v(t)), u, v ∈ XS, t ∈ S,

is just an example of a cone metric and operator Λ has properties of operator A of
Theorem 2.6.1 so this result can be obtained as a direct consequence of Theorem 5.2.5.

Hence, we see that this result points out to Ulam’s stability of wide class of functional
equations and therefore, could be applied in biology, economy, etc, par example in SIS
infection model of constant population or model of economic monopoly with constant
output.
Another approach could be looking at Ulam’s stability of differential equations with de-
lay like in [99], and in a similar way, we may apply presented results in this and previous
sections to assure Ulam’s stability.

Preferably, we would add well-posedness problem to the content of this section. Well-
posed problem is introduced by J. Hadamard and it unites three important requests:
existence of a solution, uniqueness and that solutions’s behavior is continuously depen-
dent on initial data, that, in his opinion, every mathematical model should have. Not
well-posed problems are known as ill-posed.

Definition 5.2.6. Let (X, d) be a cone metric space and f : X 7→ X a mapping. The
fixed point problem f(x) = x is well-posed if Fix(f) = {z} ⊆ X and if lim

n→∞
d(xn, f(xn)) =

θ, (xn) ∈ X, then lim
n→∞

xn = z.

Similarly to what follows, we can obtained well-posedness for most of Perov type
results on solid cone metric space presented in Sections 2.1-2.3. To justify this assertion,
we prove that fixed point problem studied in Theorem 2.1.3.

Theorem 5.2.7. Fixed point problem for Perov type contraction on a complete solid
cone metric space is well-posed.

Proof. Take (xn) ⊆ X such that lim
n→∞

d(xn, f(xn)) = θ, ε � θ and n0 ∈ N determined

that d(xn, f(xn)) � ε when n ≥ n0. Furthermore,

d(xn, z) ≤ d(xn, f(xn)) + d(f(xn), z)

≤ ε+ A(d(xn, z))

= (I − A)−1(ε).

Choice of ε along with properties of solid cone, justifies conclusion lim
n→∞

xn = z.



Chapter 6

Conclusion

The purpose of this chapter is to give a short overview on presented results, their sig-
nificance, novelty and applications because that determines overall contribution of this
dissertation. Since all correlations are already explained, we will not go into the details.
As previously mentioned, main results are collected in Chapter 2. In the first part we
extend and improve results of Banach ([18]), Perov ([101, 102]), Berinde ([22, 23]) among
others. We failed to emphasise that Banach theorem and obvious corollaries on a cone
metric spaces are consequence of Perov type theorems extending ([1, 6, 14, 48, 49, 67]).
Most important difference is including operator in a contractive condition and giving
sufficient conditions in order to obtain fixed point. Perov type quasi-contraction is an
extension of Ćirić quasi-contraction and in this section we unify and improve many re-
sults from [40, 91, 92, 93, 104]. The main theorem of [57] is a corollary of Theorem
2.2.2. In a same manner, we see that several theorems presented in [38, 54, 56] were
the motivation for the progress made in the third section 2.3. Looking at this problem
on partially ordered cone metric space, there is an obvious link to [11, 96, 97, 114] and
results presented therein.
Third chapter directs our research to common fixed point problem and rounds up a great
amount of different results concerning common fixed point problem. Various approaches
and techniques led to obtaining many results presented in [2, 3, 5, 10, 13, 16, 21, 64, 78,
79, 82, 85, 128].
Last two chapters, 4 and 5, show the progress made in this dissertation. Despite many ex-
amples, most of them regarding integral equations, we should pay attention to Ulam’s sta-
bility section 5.2 from a different research angle that one presented in articles [17, 27, 28].

The future research could split in two directions, obtaining new theoretical results
and discussing their impact on already published results, and looking for new areas of
applications in mathematics, but also in other sciences. Some questions regarding cone
metric and metric spaces still stay open, so it would be interesting to see the influence
of these findings.
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[14] M. Asadi, S. M. Vazepour, V. Rakočević and B. E. Rhoades, Fixed point theorems
for contractive mapping in cone metric space, Math. Commun. 16 (2011), 147-155.

[15] M, Asadi, B. E. Rhoades and H. Soleimani, Some notes on the paper The equivalence
of cone metric spaces and metric spaces, Fixed Point Theory Appl. 2012 (2012),
2012:87

[16] A. Azam and M. Arshad, Common fixed points of generalized contractive maps in
cone metric spaces, B. Iran. Math. Soc. 35 (2009), 255-264.

[17] R. Badora, J. Brzdek Fixed points of a mapping and HyersUlam stability, J.
Math.Anal.Appl. 413 (2014), 450-457.

[18] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux
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best graduate student from the Faculty of Sciences and Mathematics. She graduated
defending a master thesis ”Matrix inequalities” and enrolled PhD studies at the same
faculty. During the studies, she participated on many international courses organized by
DAAD and BEST. From 2007. she is an assistant at lecturer at mathematics programme
in Petnica Science Center.

Starting from 2012. she is employed at the Faculty of Sciences and Mathematics,
one year as a teaching associate, after that as a teaching assistant. She teaches Linear
algebra, Introduction to Topology on undergraduate studies, and Mathematical Logic
(2012-2016.), Algebraic Topology, Fixed Point Theory and Application, Approximation
Theory and Quadrature Formulas, Set Theory on graduate level. She is participating as
a researcher on a project: Problems in nonlinear analysis, operator theory, topology and
applications, No.174205 supported by the Ministry of Education, Science and Techno-
logical Development of the Republic of Serbia. Since 2013. she teaches children talented
for Mathematics in VII and VIII grade in a special mathematical class within ”Svetozar
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